1. Discovery of drug transporter inhibitors tied to long noncoding RNA in resistant cancer cells; a computational model -in silico- study.
作者: Mohanad Diab.;Amel Hamdi.;Feras Al-Obeidat.;Wael Hafez.;Ivan Cherrez-Ojeda.;Muneir Gador.;Gowhar Rashid.;Sana F Elkhazin.;Mahmad Anwar Ibrahim.;Tarek Farag Ismail.;Samar Sami Alkafaas.
来源: Front Immunol. 2025年16卷1511029页
Chemotherapeutic resistance is a major obstacle to chemotherapeutic failure. Cancer cell resistance involves several mechanisms, including epithelial-to-mesenchymal transition (EMT), signaling pathway bypass, drug efflux activation, and impairment of drug entry. P-glycoproteins (P-gp) are an efflux transporter that pumps chemotherapeutic drugs out of cancer cells, resulting in chemotherapeutic resistance. Several types of long noncoding RNA (lncRNAs) have been identified in resistant cancer cells, including ODRUL, MALAT1, and ANRIL. The high expression level of ODRUL is related to the induction of ATP-binding cassette (ABC) gene expression, resulting in the emergence of doxorubicin resistance in osteosarcoma. lncRNAs are observed to be regulators of drug transporters in cancer cells such as MALAT1 and ANRIL. Targeting P-gp expression using natural products is a new strategy to overcome cancer cell resistance and improve the sensitivity of resistant cells toward chemotherapies. This review validates the inhibitory effects of natural products on P-gp expression and activity using in silico molecular docking. In silico analysis showed that Delphinidin and Asparagoside-f are the most significant natural product inhibitors of p-glycoprotein-1. These inhibitors can reverse multi-drug resistance and induce the sensitivity of resistant cancer cells toward chemotherapy based on in silico molecular docking. It is important to validate that pre-elementary docking can be confirmed using in vitro and in vivo experimental data.
2. Natural Products as Modulators of miRNA in Hepatocellular Carcinoma: A Therapeutic Perspective.
Hepatocellular carcinoma (HCC) continues to pose a substantial worldwide health concern, marked by elevated mortality rates and restricted therapeutic alternatives. Recent studies have highlighted the potential of natural compounds as therapeutic agents in cancer management. This review focuses on the diagnostic and prognostic potential of microRNAs (miRNAs) as biomarkers in HCC, alongside the therapeutic promise of natural products. We explore the intricate role of miRNAs in the pathogenesis of HCC, detailing their regulatory functions in cellular processes such as proliferation, apoptosis, and metastasis. Additionally, we discuss the emerging evidence supporting the use of natural compounds, including phytochemicals, in modulating miRNA expression and their potential synergistic effects with conventional therapies. Key miRNAs discussed include miR-21, an oncogenic factor that promotes tumor growth by targeting the tumor suppressor phosphatase and tensin homolog (PTEN); miR-34a, which enhances apoptosis and may improve treatment efficacy when combined with c-MET inhibitors; miR-203, whose downregulation correlates with poor outcomes and may serve as a prognostic marker; miR-16, which acts as a tumor suppressor and has diagnostic potential when measured alongside traditional markers like alpha-fetoprotein (AFP); and miR-483-3p, associated with resistance to apoptosis and tumor progression. By integrating insights from recent studies, this review aims to highlight the dual role of miRNAs as both biomarkers and therapeutic targets, paving the way for enhanced diagnostic strategies and novel treatment modalities in HCC management.
3. Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity.
作者: Ishita Mehta.;Manika Verma.;Mohammed Nazish Quasmi.;Dinesh Kumar.;Ashok Jangra.
来源: Toxicology. 2025年515卷154164页
Epigenetics describes itself as heritable modifications in gene function that eventually alter gene and protein expression levels without any alterations in the genome sequence. Epigenetic alterations are closely association with several neurological diseases and neurodevelopmental disorders. In recent years, growing shreds of evidences suggested the crucial role of epigenetic modifications especially histone modifications in environmental toxicants-induced neurotoxicity. This review will give an overview of the state of knowledge on histone alterations and the ways in which environmental pollutants bisphenol-A, heavy metals, pesticides, and phthalates affects post-translational modifications to alter gene transcription and cause neurological abnormalities. We provide a brief summary of the results of recent research on the effects of environmental toxins on each of the prior identified processes of histone modifications, including the neurological consequences and changes in histones. There is also discussion of the limitations of current research findings. Furthermore, this review aims to provide viewers a comprehensive knowledge regarding the role of histone modifications in various environmental toxicants-induced neurological diseases and offers insights for future research.
4. Mechanisms of HDACs in cancer development.
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
5. Chemical-based epigenetic reprogramming to advance pluripotency and totipotency.
Reprogramming technology, breaking the inherent limitations of cellular identity and turning somatic cells into pluripotent cells with more developmental potential, holds great promise for cell therapy and regenerative medicine. Compared with traditional methods based on overexpressing transcription factors, chemical reprogramming with small molecules exhibits substantial advantages in safety and convenience, thus being the leading edge. Over the past decade, a notable focus has been reshaping cellular pluripotency and totipotency using pure small-molecule systems. Here, we provide a concise Review comparing the chemical approaches that have emerged to date and discussing the epigenetic regulatory mechanisms involved in chemical reprogramming. This Review highlights the remarkable potential of small-molecule potions to reformulate cell fate through epigenetic reprogramming and newly discovered actions. We aim to offer insights into chemically controlled cell manipulation and key challenges and future application prospects of chemical reprogramming.
6. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease.
作者: Ting Zheng.;Kai-Yue Huang.;Xu-Dong Tang.;Feng-Yun Wang.;Lin Lv.
来源: World J Gastroenterol. 2025年31卷13期104671页
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.
7. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders.
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
8. Targeting Epigenetic Plasticity to Reduce Periodontitis-Related Inflammation in Diabetes: CBD, Metformin, and Other Natural Products as Potential Synergistic Candidates for Regulation? A Narrative Review.
作者: Amelia Tero-Vescan.;Mark Slevin.;Amalia Pușcaș.;Dragoș Sita.;Ruxandra Ștefănescu.
来源: Int J Mol Sci. 2025年26卷7期
Periodontitis is unanimously accepted to be the sixth complication of diabetes mellitus (DM), while the inverse relationship of causality is still to be deciphered. Among the proposed mechanisms is gut dysbiosis, which is responsible for the systemic release of proinflammatory mediators. In this process, Gram-negative bacteria from the oral cavity enter the general circulation, leading to the emergence of bi-hormonal beta-pancreatic cells that lack the ability to secrete insulin. Additionally, epigenetic and adaptive mechanisms in affected cells may play a role in reducing inflammation. The release of reactive oxygen species, proinflammatory cytokines, and adipokines, such as interleukins, tumor necrosis factor alpha, leptin, prostaglandin E2, C-reactive protein, or matrix metalloproteinases, determine epigenetic changes, such as the methylation of DNA nucleotides or changes in the activity of histone acetylases/deacetylases. The management of periodontitis involves targeting inflammation, and its potential connection to epigenetic modulation observed in other chronic conditions may help to explain its role in preventing DM in affected patients. This review focuses on the key epigenetic changes in periodontitis that might contribute to DM development, and explores the mechanisms and novel multi-drug therapies that could help to prevent these effects.
9. Human chromatin remodelers regulating HIV-1 transcription: a target for small molecule inhibitors.
HIV-1 can establish a lifelong infection by incorporating its proviral DNA into the host genome. Once integrated, the virus can either remain dormant or start active transcription, a process governed by the HIV Tat protein, host transcription factors and the chromatin landscape at the integration site. Histone-modifying enzymes and chromatin-remodeling enzymes play crucial roles in regulating this chromatin environment. Chromatin remodelers, a group of ATP-dependent proteins, collaborate with host proteins and histone-modifying enzymes to restructure nucleosomes, facilitating DNA repair, replication, and transcription. Recent studies have highlighted the importance of chromatin remodelers in HIV-1 latency, spurring research focused on developing small molecule modulators that can either reactivate the virus for eradication approaches or induce long-term latency to prevent future reactivation. Research efforts have primarily centered on the SWI/SNF family, though much remains to be uncovered regarding other chromatin remodeling families. This review delves into the general functions and roles of each chromatin remodeling family in the context of HIV and discusses recent advances in small molecule development targeting chromatin remodelers and the HIV Tat protein, aiming to improve therapeutic approaches against HIV.
10. Harnessing histone deacetylase inhibitors for enhanced cancer immunotherapy.
Many cancers are capable of hindering the immune response against tumor cells, promoting their growth and spread; this has inspired research aimed at reversing these processes to reactivate the immune system, resulting in significant therapeutic advantages. One of the strategies being explored involves histone deacetylase (HDAC) inhibitors (HDACis), which represent a new category of targeted therapies that alter the immune system's reaction to cancer via epigenetic changes. Recently, six HDACis have been authorized for clinical applications. This review aims to provide a concise overview of how different classes of HDACis affect the immune system, based on both in vitro, in vivo, and clinical studies, and explore the latest advancements in combining new immunotherapies with these drugs. HDACis have been found to influence how various cancer treatments work by, for instance, enhancing access to exposed DNA through the relaxation of chromatin, disrupting DNA repair mechanisms, and boosting the expression of immune checkpoint receptors. Combining HDACis with immunotherapy could enhance antitumor effects and reduce drug resistance.
11. An overview of potential of natural compounds to regulate epigenetic modifications in colorectal cancer: a recent update.
作者: Susmita Roy.;Dikshita Deka.;Suresh Babu Kondaveeti.;Pavithra Ayyadurai.;Sravani Siripragada.;Neha Philip.;Surajit Pathak.;Asim K Duttaroy.;Antara Banerjee.
来源: Epigenetics. 2025年20卷1期2491316页
Colorectal cancer (CRC) remains an alarming global health concern despite advancements in treatment modalities over recent decades. Among the various factors contributing to CRC, this review emphasizes the critical role of epigenetic mechanisms in its pathogenesis and progression. This review also describes the potential role of natural compounds in altering the epigenetic landscape, focused mainly on DNA methylation, histone modification, and non-coding RNAs. Publications from the previous five years were searched and retrieved using well-known search engines and databases like PubMed, Google Scholar, and ScienceDirect. Keywords like CRC/colorectal cancer, CAC/Colitis associated CRC, inflammasomes, epigenetic modulation, genistein, curcumin, quercetin, resveratrol, anthocyanins, sulforaphane, and epigallocatechin-3-gallate were used in various combinations during the search. These natural compounds predominantly affect pathways such as Wnt/β-catenin, NF-κB, and PI3K/AKT to suppress CRC cell proliferation and oxidative stress and enhance anti-inflammation and apoptosis. However, their clinical use is restricted due to their low bioavailability. However, multiple methods exist to overcome challenges like this, including but not limited to structural modifications, nanoparticle encapsulations, bio-enhancers, and novel advanced delivery systems. These methods improve their potential as supportive therapies that target CRC progression epigenetically with fewer side effects. Current research focuses on enhancing epigenetic targeting to control CRC progression while minimizing side effects, emphasizing improved specificity, bioavailability, and efficacy as standalone or synergistic therapies.
12. Resetting the aging clock through epigenetic reprogramming: Insights from natural products.
作者: Xin Liu.;Jing Feng.;Madi Guo.;Chen Chen.;Tong Zhao.;Xiuxiu Sun.;Yong Zhang.
来源: Pharmacol Ther. 2025年270卷108850页
Epigenetic modifications play a critical role in regulating gene expression under various physiological and pathological conditions. Epigenetic modifications reprogramming is a recognized hallmark of aging and a key component of the aging clock used to differentiate between chronological and biological age. The potential for prospective diagnosis and regulatory capabilities position epigenetic modifications as an emerging drug target to extend longevity and alleviate age-related organ dysfunctions. In the past few decades, numerous preclinical studies have demonstrated the therapeutic potential of natural products in various human diseases, including aging, with some advancing to clinical trials and clinical application. This review highlights the discovery and recent advancements in the aging clock, as well as the potential use of natural products as anti-aging therapeutics by correcting disordered epigenetic reprogramming. Specifically, the focus is on the imbalance of histone modifications, alterations in DNA methylation patterns, disrupted ATP-dependent chromatin remodeling, and changes in RNA modifications. By exploring these areas, new insights can be gained into aging prediction and anti-aging interventions.
13. Targeting the undruggable MYC in cancer: the rationale of using XPO1 inhibitors.
MYC is an important transcription factor involved in physiological processes such as cell growth, proliferation and differentiation. However, aberrant MYC expression has oncogenic-driving potential and is observed in the majority of human cancers. XPO1 is a member of the exportin family of proteins which regulate protein and RNA export from the nucleus to the cytoplasm. XPO1 is aberrantly expressed in cancer, especially with the advancing of the disease. XPO1 inhibition is able to decrease MYC levels through various pathways leading to decreased cancer cell viability. These pathways include other undruggable targets such as p53 and KRAS, DNA damage repair proteins, immune response mediators including IκB, and other transcription factors such as eIF4E. Herein, we describe the potential pathways and mechanisms through which XPO1 inhibition promotes MYC downregulation and subsequent downregulation of its targets. We also describe possible drug combinations with potential clinical applications.
14. Endocrine-Disrupting Chemicals and the Effects of Distorted Epigenetics on Preeclampsia: A Systematic Review.
作者: Balu Usha Rani.;Ramasamy Vasantharekha.;Winkins Santosh.;Thangavelu Swarnalingam.;Seetharaman Barathi.
来源: Cells. 2025年14卷7期
Preeclampsia (PE) is a critical complication of pregnancy that affects 3% to 5% of all pregnancies and has been linked to aberrant placentation, causing severe maternal and fetal illness and death.
15. A Narrative Review on the Effect of Valproic Acid on the Placenta.
Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy.
16. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture.
作者: Heng Zhang.;Xiao Yang.;Yujin Guo.;Haibo Zhao.;Pei Jiang.;Qing-Qing Yu.
来源: Oncol Res. 2025年33卷4期837-849页
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
17. Targeting the epigenetic regulation of ferroptosis: a potential therapeutic approach for sepsis-associated acute kidney injury.
作者: Yuhang Yang.;Xinqi Deng.;Wenyuan Li.;Yan Leng.;Yonghong Xiong.;Bihan Wang.;Siyuan Gong.;Yunhao Wang.;Baichuan Yang.;Wei Li.
来源: Clin Epigenetics. 2025年17卷1期57页
Sepsis is a syndrome of organ dysfunction caused by the invasion of pathogenic microorganisms. In clinical practice, patients with sepsis are prone to concurrent acute kidney injury, which has high morbidity and mortality rates. Thus, understanding the pathogenesis of sepsis-associated acute kidney injury is of significant clinical importance. Ferroptosis is an iron-dependent programmed cell death pathway, which is proved to play a critical role in the process of sepsis-associated acute kidney injury through various mechanisms. Epigenetic regulation modulates the content and function of nucleic acids and proteins within cells through various modifications. Its impact on ferroptosis has garnered increasing attention; however, the role of epigenetic regulation targeting ferroptosis in sepsis-associated acute kidney injury has not been fully elucidated. Growing evidence suggests that epigenetic regulation can modulate ferroptosis through complex pathway networks, thereby affecting the development and prognosis of sepsis-associated acute kidney injury. This paper summarizes the impact of ferroptosis on sepsis-associated acute kidney injury and the regulatory mechanisms of epigenetic regulation on ferroptosis, providing new insights for the targeted therapy of sepsis-associated acute kidney injury.
18. The Potential of RNA Therapeutics in Treating Cardiovascular Disease.
Despite significant advances in cardiology over the past few decades, cardiovascular diseases (CVDs) remain the leading cause of global mortality and morbidity. This underscores the need for novel therapeutic interventions that go beyond symptom management to address the underlying causal mechanisms of CVDs. RNA-based therapeutics represent a new class of drugs capable of regulating specific genetic and molecular pathways, positioning them as strong candidates for targeting the root causes of a wide range of diseases. Moreover, owing to the vast diversity in RNA form and function, these molecules can be utilized to induce changes at different levels of gene expression regulation, making them suitable for a broad array of medical applications, even within a single disease context. Several RNA-based therapies are currently being investigated for their potential to address various CVD pathologies. These include treatments aimed at promoting cardiac revascularization and regeneration, preventing cardiomyocyte apoptosis, reducing harmful circulating cholesterols and fats, lowering blood pressure, reversing cardiac fibrosis and remodeling, and correcting the genetic basis of inherited CVDs. In this review, we discuss the current landscape of RNA therapeutics for CVDs, with an emphasis on their classifications, modes of action, advancements in delivery strategies and considerations for their implementation, as well as CVD targets with proven therapeutic potential.
19. Histone acetylation modulators in breast cancer.
Breast cancer is the most prevalent cancer in women worldwide. Aberrant epigenetic reprogramming such as dysregulation of histone acetylation has been associated with the development of breast cancer. Histone acetylation modulators have been targeted as potential treatments for breast cancer. This review comprehensively discusses the roles of these modulators and the effects of their inhibitors on breast cancer. In addition, epigenetic reprogramming not only affects breast cancer cells but also the immunosuppressive myeloid cells, which can facilitate breast cancer progression. Therefore, the review also highlights the roles of these immunosuppressive myeloid cells and summarizes how histone acetylation modulators affect their functions and phenotypes. This review provides insights into histone acetylation modulators as potential therapeutic targets for breast cancer.
20. Role of the Wnt signaling pathway in the complex microenvironment of breast cancer and prospects for therapeutic potential (Review).
作者: Meng Xuan Sun.;Han Ci Zhu.;Yang Yu.;Yan Yao.;Hua Yao Li.;Fu Bin Feng.;Qing Yang Wang.;Rui Juan Liu.;Chang Gang Sun.
来源: Int J Oncol. 2025年66卷5期
The focus on breast cancer treatment has shifted from the cytotoxic effects of single drugs on tumor cells to multidimensional multi‑pathway synergistic intervention strategies targeting the tumor microenvironment (TME). The activation of the Wnt signaling pathway in the TME of breast cancer cells serves a key regulatory role in tissue homeostasis and is a key driver of the carcinogenic process. Modulating the crosstalk between the Wnt pathway and TME of breast cancer is key for understanding the biological behavior of breast cancer and advancing the development of novel antitumor drugs. The present review aimed to summarize the complex mechanisms of the Wnt signaling pathway in the breast cancer TME, interactions between the Wnt signaling pathway and components of the breast cancer TME and breast cancer‑associated genes, as well as the interactions between the Wnt signaling pathway and other signaling cascades at the molecular level. Furthermore, the present review aimed to highlight the unique advantages of the Wnt signaling pathway in the macro‑regulation of the TME and the current therapeutic strategies targeting the Wnt signaling pathway, their potential clinical value and future research directions in breast cancer treatment.
|