当前位置: 首页 >> 检索结果
共有 2800 条符合本次的查询结果, 用时 8.5401695 秒

1. Mechanisms of HDACs in cancer development.

作者: Ying Zhang.;Haotian Wang.;Zhumei Zhan.;Lin Gan.;Out Bai.
来源: Front Immunol. 2025年16卷1529239页
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.

2. Endoplasmic reticulum stress in gut inflammation: Implications for ulcerative colitis and Crohn's disease.

作者: Ting Zheng.;Kai-Yue Huang.;Xu-Dong Tang.;Feng-Yun Wang.;Lin Lv.
来源: World J Gastroenterol. 2025年31卷13期104671页
Eukaryotic cells contain the endoplasmic reticulum (ER), a prevalent and intricate membranous structural system. During the development of inflammatory bowel disease (IBD), the stress on the ER and the start of the unfolded protein response are very important. Some chemicals, including 4μ8C, small molecule agonists of X-box binding protein 1, and ISRIB, work on the inositol-requiring enzyme 1, turn on transcription factor 6, and activate protein kinase RNA-like ER kinase pathways. This may help ease the symptoms of IBD. Researchers investigating the gut microbiota have discovered a correlation between ER stress and it. This suggests that changing the gut microbiota could help make new medicines for IBD. This study looks at how ER stress works and how it contributes to the emergence of IBD. It also talks about its possible clinical importance as a therapeutic target and looks into new ways to treat this condition.

3. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders.

作者: Sebastian Kalenik.;Agnieszka Zaczek.;Aleksandra Rodacka.
来源: Int J Mol Sci. 2025年26卷7期
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.

4. Targeting Epigenetic Plasticity to Reduce Periodontitis-Related Inflammation in Diabetes: CBD, Metformin, and Other Natural Products as Potential Synergistic Candidates for Regulation? A Narrative Review.

作者: Amelia Tero-Vescan.;Mark Slevin.;Amalia Pușcaș.;Dragoș Sita.;Ruxandra Ștefănescu.
来源: Int J Mol Sci. 2025年26卷7期
Periodontitis is unanimously accepted to be the sixth complication of diabetes mellitus (DM), while the inverse relationship of causality is still to be deciphered. Among the proposed mechanisms is gut dysbiosis, which is responsible for the systemic release of proinflammatory mediators. In this process, Gram-negative bacteria from the oral cavity enter the general circulation, leading to the emergence of bi-hormonal beta-pancreatic cells that lack the ability to secrete insulin. Additionally, epigenetic and adaptive mechanisms in affected cells may play a role in reducing inflammation. The release of reactive oxygen species, proinflammatory cytokines, and adipokines, such as interleukins, tumor necrosis factor alpha, leptin, prostaglandin E2, C-reactive protein, or matrix metalloproteinases, determine epigenetic changes, such as the methylation of DNA nucleotides or changes in the activity of histone acetylases/deacetylases. The management of periodontitis involves targeting inflammation, and its potential connection to epigenetic modulation observed in other chronic conditions may help to explain its role in preventing DM in affected patients. This review focuses on the key epigenetic changes in periodontitis that might contribute to DM development, and explores the mechanisms and novel multi-drug therapies that could help to prevent these effects.

5. Human chromatin remodelers regulating HIV-1 transcription: a target for small molecule inhibitors.

作者: Yuan Ma.;Chuan Li.;Susana Valente.
来源: Epigenetics Chromatin. 2025年18卷1期21页
HIV-1 can establish a lifelong infection by incorporating its proviral DNA into the host genome. Once integrated, the virus can either remain dormant or start active transcription, a process governed by the HIV Tat protein, host transcription factors and the chromatin landscape at the integration site. Histone-modifying enzymes and chromatin-remodeling enzymes play crucial roles in regulating this chromatin environment. Chromatin remodelers, a group of ATP-dependent proteins, collaborate with host proteins and histone-modifying enzymes to restructure nucleosomes, facilitating DNA repair, replication, and transcription. Recent studies have highlighted the importance of chromatin remodelers in HIV-1 latency, spurring research focused on developing small molecule modulators that can either reactivate the virus for eradication approaches or induce long-term latency to prevent future reactivation. Research efforts have primarily centered on the SWI/SNF family, though much remains to be uncovered regarding other chromatin remodeling families. This review delves into the general functions and roles of each chromatin remodeling family in the context of HIV and discusses recent advances in small molecule development targeting chromatin remodelers and the HIV Tat protein, aiming to improve therapeutic approaches against HIV.

6. An overview of potential of natural compounds to regulate epigenetic modifications in colorectal cancer: a recent update.

作者: Susmita Roy.;Dikshita Deka.;Suresh Babu Kondaveeti.;Pavithra Ayyadurai.;Sravani Siripragada.;Neha Philip.;Surajit Pathak.;Asim K Duttaroy.;Antara Banerjee.
来源: Epigenetics. 2025年20卷1期2491316页
Colorectal cancer (CRC) remains an alarming global health concern despite advancements in treatment modalities over recent decades. Among the various factors contributing to CRC, this review emphasizes the critical role of epigenetic mechanisms in its pathogenesis and progression. This review also describes the potential role of natural compounds in altering the epigenetic landscape, focused mainly on DNA methylation, histone modification, and non-coding RNAs. Publications from the previous five years were searched and retrieved using well-known search engines and databases like PubMed, Google Scholar, and ScienceDirect. Keywords like CRC/colorectal cancer, CAC/Colitis associated CRC, inflammasomes, epigenetic modulation, genistein, curcumin, quercetin, resveratrol, anthocyanins, sulforaphane, and epigallocatechin-3-gallate were used in various combinations during the search. These natural compounds predominantly affect pathways such as Wnt/β-catenin, NF-κB, and PI3K/AKT to suppress CRC cell proliferation and oxidative stress and enhance anti-inflammation and apoptosis. However, their clinical use is restricted due to their low bioavailability. However, multiple methods exist to overcome challenges like this, including but not limited to structural modifications, nanoparticle encapsulations, bio-enhancers, and novel advanced delivery systems. These methods improve their potential as supportive therapies that target CRC progression epigenetically with fewer side effects. Current research focuses on enhancing epigenetic targeting to control CRC progression while minimizing side effects, emphasizing improved specificity, bioavailability, and efficacy as standalone or synergistic therapies.

7. Endocrine-Disrupting Chemicals and the Effects of Distorted Epigenetics on Preeclampsia: A Systematic Review.

作者: Balu Usha Rani.;Ramasamy Vasantharekha.;Winkins Santosh.;Thangavelu Swarnalingam.;Seetharaman Barathi.
来源: Cells. 2025年14卷7期
Preeclampsia (PE) is a critical complication of pregnancy that affects 3% to 5% of all pregnancies and has been linked to aberrant placentation, causing severe maternal and fetal illness and death.

8. A Narrative Review on the Effect of Valproic Acid on the Placenta.

作者: Lauren T L Brown.;Delaine Pereira.;Louise M Winn.
来源: Birth Defects Res. 2025年117卷4期e2471页
Valproic acid (VPA) is an antiepileptic and mood-stabilizing drug with well-established teratogenic risks when taken during pregnancy. While its harmful effects on fetal development are well known, less attention has been given to its impact on placental development and function, despite the placenta's critical role in pregnancy.

9. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture.

作者: Heng Zhang.;Xiao Yang.;Yujin Guo.;Haibo Zhao.;Pei Jiang.;Qing-Qing Yu.
来源: Oncol Res. 2025年33卷4期837-849页
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.

10. Targeting the epigenetic regulation of ferroptosis: a potential therapeutic approach for sepsis-associated acute kidney injury.

作者: Yuhang Yang.;Xinqi Deng.;Wenyuan Li.;Yan Leng.;Yonghong Xiong.;Bihan Wang.;Siyuan Gong.;Yunhao Wang.;Baichuan Yang.;Wei Li.
来源: Clin Epigenetics. 2025年17卷1期57页
Sepsis is a syndrome of organ dysfunction caused by the invasion of pathogenic microorganisms. In clinical practice, patients with sepsis are prone to concurrent acute kidney injury, which has high morbidity and mortality rates. Thus, understanding the pathogenesis of sepsis-associated acute kidney injury is of significant clinical importance. Ferroptosis is an iron-dependent programmed cell death pathway, which is proved to play a critical role in the process of sepsis-associated acute kidney injury through various mechanisms. Epigenetic regulation modulates the content and function of nucleic acids and proteins within cells through various modifications. Its impact on ferroptosis has garnered increasing attention; however, the role of epigenetic regulation targeting ferroptosis in sepsis-associated acute kidney injury has not been fully elucidated. Growing evidence suggests that epigenetic regulation can modulate ferroptosis through complex pathway networks, thereby affecting the development and prognosis of sepsis-associated acute kidney injury. This paper summarizes the impact of ferroptosis on sepsis-associated acute kidney injury and the regulatory mechanisms of epigenetic regulation on ferroptosis, providing new insights for the targeted therapy of sepsis-associated acute kidney injury.

11. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review.

作者: Amir Valizadeh.;Rebecca T Veenhuis.;Brooklyn A Bradley.;Ke Xu.
来源: Int J Mol Sci. 2025年26卷6期
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.

12. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives.

作者: Huan Zhang.;Yutong Pang.;Ling Yi.;Xiaojue Wang.;Panjian Wei.;Haichao Wang.;Shuye Lin.
来源: Clin Epigenetics. 2025年17卷1期51页
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.

13. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review).

作者: Junxin Li.;Yanyu Li.;Lin Fu.;Huiling Chen.;Fei Du.;Zhongshu Wang.;Yan Zhang.;Yu Huang.;Jidong Miao.;Yi Xiao.
来源: Int J Oncol. 2025年66卷5期
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.

14. Chemical application improves stress resilience in plants.

作者: Khurram Bashir.;Daisuke Todaka.;Kaori Sako.;Minoru Ueda.;Farhan Aziz.;Motoaki Seki.
来源: Plant Mol Biol. 2025年115卷2期47页
In recent years, abiotic stresses, including droughts, floods, high temperatures, and salinity, have become increasingly frequent and severe. These stresses significantly hinder crop yields and product quality, posing substantial challenges to sustainable agriculture and global food security. Simultaneously, the rapidly growing global population exacerbates the need to enhance crop production under worsening environmental conditions. Consequently, the development of effective strategies to strengthen the resilience of crop plants against high temperatures, water scarcity, and extreme environmental conditions is critical for mitigating the impacts of abiotic stress. Plants respond to these environmental challenges by reprogramming their transcriptome and metabolome. Common strategies for developing stress-tolerant plants include screening germplasm, generating transgenic crop plants, and employing genome editing techniques. Recently, chemical treatment has emerged as a promising approach to enhance abiotic stress tolerance in crops. This technique involves the application of exogenous chemical compounds that induce molecular and physiological changes, thereby providing a protective shield against abiotic stress. Forward and reverse genetic approaches have facilitated the identification of chemicals capable of modulating plant responses to abiotic stresses. These priming agents function as epigenetic regulators, agonists, or antagonists, playing essential roles in regulating stomatal closure to conserve water, managing cellular signaling through reactive oxygen species and metabolites to sustain plant growth, and activating gluconeogenesis to enhance cellular metabolism. This review summarizes recent advancements in the field of chemical priming and explores strategies to improve stress tolerance and crop productivity, thereby contributing to the enhancement of global food security.

15. Neuroprotection effect of bovine umbilical mesenchymal stem cell-conditioned medium on the rat model of Alzheimer's disease mediated by upregulation of BDNF and NGF and downregulation of TNF-α and IL-1β.

作者: Hevi Wihadmadyatami.;Muhammad Ali Zulfikar.;Herawati Herawati.;Srikanth Karnati.;Golda Rani Saragih.;Dinda Aliffia.;Dyah A O A Pratama.;Nurrahmi Handayani.;Ulayatul Kustiati.;Dewi Ratih Tirtosari.;Yudy Tjahjono.
来源: Open Vet J. 2025年15卷1期151-161页
Neurodegenerative diseases (NDDs) are distinguished by impairment and depletion of nerve cells; one of the most common NDDs is Alzheimer's disease (AD), which can appear in early onset or late onset. In recent years, the secretome or conditioned medium of mesenchymal stem cells has provided new hope for improving conditions and preventing AD. One of the secretomes is bovine umbilical mesenchymal stem cells-conditioned medium (BUMSC-CM), where BUMSC is predicted to promote neuronal proliferation potentially.

16. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors.

作者: Lei Chen.;Heng Lu.;Farah Ballout.;Wael El-Rifai.;Zheng Chen.;Ravindran Caspa Gokulan.;Oliver Gene McDonald.;Dunfa Peng.
来源: Int J Mol Sci. 2025年26卷5期
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.

17. Clinical efficacy and mechanistic insights of FDA-approved HDAC inhibitors in the treatment of lymphoma.

作者: Nasreddine El Omari.;Saad Bakrim.;Hamza Elhrech.;Tarik Aanniz.;Abdelaali Balahbib.;Learn-Han Lee.;Waleed Al Abdulmonem.;Abdelhakim Bouyahya.
来源: Eur J Pharm Sci. 2025年208卷107057页
Lymphomas are complex malignancies of blood cells, characterized by the malignant transformation of lymphocytes. This transformation is partially driven by disruptions in epigenetic regulation, particularly the acetylation of histones. Among the key players in this process are histone deacetylases (HDACs), whose aberrant activity contributes significantly to lymphoma development. Consequently, targeting HDACs represents a promising pharmacotherapeutic approach. Several HDAC inhibitors (HDACis) have demonstrated significant anticancer effects, with four FDA-approved molecules-vorinostat, romidepsin, belinostat, and panobinostat-forming critical components of chemotherapy regimens for lymphoma treatment. These HDAC inhibitors exhibit their therapeutic efficacy through mechanisms that indirectly impact cellular memory and induce cancer cell death via apoptosis and cell cycle arrest. Their clinical effectiveness is particularly notable in various types of lymphomas, underscoring their therapeutic potential. The objective of this review is to provide a detailed analysis of FDA-approved HDACis, focusing on their molecular mechanisms of action and clinical applications in lymphoma treatment. Specifically, we aim to elucidate how these inhibitors modulate epigenetic regulation to achieve therapeutic efficacy, highlight their utility across different lymphoma subtypes, and examine their integration into combination therapies with other anticancer agents. Furthermore, this review seeks to identify gaps in current knowledge and propose directions for future research, including the development of next-generation HDAC inhibitors and strategies for optimizing their clinical use. By consolidating existing evidence, we strive to enhance the understanding of HDACis' role in lymphoma therapy and inspire advancements in their therapeutic potential.

18. Advances in epigenetic treatment of adult T-cell leukemia/lymphoma: a comprehensive review.

作者: Arash Letafati.;Rabeeh Mehdigholian Chaijani.;Fahime Edalat.;Nazila Eslami.;Hanieh Askari.;Farideh Askari.;Sara Shirvani.;Hamed Talebzadeh.;Mahdiyeh Tarahomi.;Nila MirKhani.;Faeze Karimi.;Mehdi Norouzi.;Sayed-Hamidreza Mozhgani.
来源: Clin Epigenetics. 2025年17卷1期39页
Human T-cell lymphotropic virus type 1 (HTLV-1) infection causes the uncommon and deadly cancer known as adult T-cell leukemia/lymphoma (ATLL), which affects mature T cells. Its clinical appearance is varied, and its prognosis is often miserable. Drug resistance to conventional therapies confers significant therapeutic challenges in the management of ATLL. This review discusses the emerging role of epigenetic medical advances in the treatment of ATLL, focusing on DNA methyltransferase inhibitors, histone deacetylase inhibitors, histone methyltransferase inhibitors, and BET inhibitors. Indeed, several classes of epigenetic therapies currently exhibit trailed efficacy in preclinical and clinical studies: DNA methyltransferase inhibitors like azacitidine and decitabine reexpression of silenced tumor suppressors; histone deacetylase inhibitors like vorinostat and romidepsin induce cell cycle arrest and apoptosis; bromodomain and extra-terminal inhibitors like JQ1 disrupt oncogenic signaling pathways. Whereas preclinical and early clinical data indicate modest to good efficacy for such treatments, significant challenges remain. Here, we discuss the current state of understanding of epigenetic dysregulation in ATLL and appraise the evidence supporting the use of these epi-drugs. However, despite the opened doors of epigenetic treatment, much more research is required with regard to showing the best combinations of drugs and their resistance mechanisms, the minimization of adverse effects, and how this hope will eventually be translated into benefit for the patient with ATLL.

19. Epigenetic drugs in cancer therapy.

作者: Amila Suraweera.;Kenneth J O'Byrne.;Derek J Richard.
来源: Cancer Metastasis Rev. 2025年44卷1期37页
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.

20. The Anti-Aging Mechanism of Metformin: From Molecular Insights to Clinical Applications.

作者: Ting Zhang.;Lijun Zhou.;Meagan J Makarczyk.;Peng Feng.;Jianying Zhang.
来源: Molecules. 2025年30卷4期
Aging represents a complex biological phenomenon marked by the progressive deterioration of physiological functions over time, reduced resilience, and increased vulnerability to age-related diseases, ultimately culminating in mortality. Recent research has uncovered diverse molecular mechanisms through which metformin extends its benefits beyond glycemic control, presenting it as a promising intervention against aging. This review delves into the anti-aging properties of metformin, highlighting its role in mitochondrial energy modulation, activation of the AMPK-mTOR signaling pathway, stimulation of autophagy, and mitigation of inflammation linked to cellular aging. Furthermore, we discuss its influence on epigenetic modifications that underpin genomic stability and cellular homeostasis. Metformin's potential in addressing age-associated disorders including metabolic, cardiovascular, and neurodegenerative diseases is also explored. The Targeting Aging with Metformin (TAME) trial aims to provide key evidence on its efficacy in delaying aging in humans. Despite these promising insights, significant challenges persist in gaining a more comprehensive understanding into its underlying mechanisms, determining optimal dosing strategies, and evaluating long-term safety in non-diabetic populations. Addressing these challenges is crucial to fully realizing metformin's potential as an anti-aging therapeutic.
共有 2800 条符合本次的查询结果, 用时 8.5401695 秒