173. Author Correction: The oldest known lepidosaur and origins of lepidosaur feeding adaptations.
作者: Daniel Marke.;David I Whiteside.;Thitiwoot Sethapanichsakul.;Robert A Coram.;Vincent Fernandez.;Alexander Liptak.;Elis Newham.;Michael J Benton.
来源: Nature. 2025年 174. Publisher Correction: Radiation-induced amphiregulin drives tumour metastasis.
作者: András Piffkó.;Kaiting Yang.;Arpit Panda.;Janna Heide.;Krystyna Tesak.;Chuangyu Wen.;Katarzyna Zawieracz.;Liangliang Wang.;Emile Z Naccasha.;Jason Bugno.;Yanbin Fu.;Dapeng Chen.;Leonhard Donle.;Ernst Lengyel.;Douglas G Tilley.;Matthias Mack.;Ronald S Rock.;Steven J Chmura.;Everett E Vokes.;Chuan He.;Sean P Pitroda.;Hua Laura Liang.;Ralph R Weichselbaum.
来源: Nature. 2025年 175. Flexible perovskite/silicon tandem solar cell with a dual buffer layer.
作者: Zheng Fang.;Lei Ding.;Ying Yang.;Xiaobing Gu.;Haiyue Li.;Hao Chen.;Yue Yin.;Wei Wang.;Xiaoyong Wu.;Zhijie Rao.;Linyu Ning.;Dongsheng Yang.;Huimin Zhang.;Yongdeng Long.;Wei Li.;Fu Zhang.;Simeng Xia.;Lingbo Jia.;Chi Liu.;Bochao Li.;Bo Liu.;Shijie Ju.;Wei Du.;Hua Zhang.;Yuan Qin.;Xiaoning Ru.;Yongyuan Xu.;Yue Lu.;Yongcai He.;Zhenguo Li.;Xixiang Xu.;Minghao Qu.;Bo He.;Jiang Liu.;Xiaohong Zhang.
来源: Nature. 2025年
Perovskite/silicon tandem solar cells have emerged as promising candidates for next-generation photovoltaic technology due to their ultra-high power conversion efficiency (PCE)1-3. However, the mechanical stress generated during repeated environmental stress cycles remains a critical challenge for flexible perovskite/silicon tandem solar cells, leading to interfacial delamination and device degradation. In this work, we propose a dual-buffer-layer strategy with a stress-release mechanism to synergistically mitigate ion bombardment during subsequent sputtering deposition and enhance interfacial adhesion while preserving efficient charge extraction. The loose SnOx buffer layer, engineered by adjusting the purging time of atomic layer deposition, can dissipate strain energy, whereas the compact SnOx layer can ensure robust electrical contact. Based on this dual-buffer-layer, the flexible tandem solar cell, constructed on a 60-micron thick ultra-thin silicon bottom cell, achieves a certified PCE of 33.4% on 1-cm2 area, and an certified PCE of 29.8% on wafer-sized area of 260-cm2 with a power-per-weight of up to 1.77 W/g. The modified tandem solar cells demonstrate good durability, retaining over 97% of their initial power conversion efficiencies after 43000 bending cycles under a maximum curvature radius of around 40 mm in air, and around 97% after thermal cycling testing (-40 °C to 85 °C) for 250 cycles.
176. A fault-tolerant neutral-atom architecture for universal quantum computation.
作者: Dolev Bluvstein.;Alexandra A Geim.;Sophie H Li.;Simon J Evered.;J Pablo Bonilla Ataides.;Gefen Baranes.;Andi Gu.;Tom Manovitz.;Muqing Xu.;Marcin Kalinowski.;Shayan Majidy.;Christian Kokail.;Nishad Maskara.;Elias C Trapp.;Luke M Stewart.;Simon Hollerith.;Hengyun Zhou.;Michael J Gullans.;Susanne F Yelin.;Markus Greiner.;Vladan Vuletić.;Madelyn Cain.;Mikhail D Lukin.
来源: Nature. 2025年
Quantum error correction (QEC) [1,2] is essential for the realization of large-scale quantum computers [3,4]. However, due to the complexity of operating on the encoded 'logical' qubits [5,6], understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement the key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors [6,7], demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding [8,9]. We then investigate logical entanglement using transversal gates and lattice surgery [10-12], and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes [13,14], enabling arbitrary-angle synthesis with polylogarithmic overhead [5,15]. Finally, we develop mid-circuit qubit re-use [16], increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations [17-20] with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic & entropy removal, judiciously using physical entanglement in logic gates & magic state generation, and leveraging teleportations for universality & physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems.
177. Flexible perovskite/silicon tandem solar cells with 33.6% efficiency.
作者: Shibo Wang.;Wenhao Li.;Cao Yu.;Wei Shi.;Qian Kang.;Fengxian Cao.;Kun Gao.;Liu Yang.;Bowen Yang.;Jian Zhou.;Shaofei Yang.;Qi Wang.;Qin Fei.;Xi Chen.;Gaoyuan Chen.;Pengxu Chen.;Zijia Li.;Wei-Chih Hsu.;Zhongliang Yan.;Yang Bai.;Wenzhu Liu.;Stefaan De Wolf.;Xinbo Yang.;Xiaohong Zhang.
来源: Nature. 2025年
Flexible solar cells have a transformative potential for niche applications, yet face fundamental challenges in simultaneously achieving high power conversion efficiency (PCE), extreme mechanical resilience and operational stability1-4. Herein, we demonstrate a certified 33.6%-efficient flexible perovskite/crystalline silicon (c-Si) tandem solar cell with a record open-circuit voltage (Voc) of 2.015 V, rivaling its rigid counterpart. The flexible tandem retains 91% of its initial PCE after 5,000 cycles under a bending radius (Rb) of 17.6 mm, and demonstrates exceptional operational and damp-heat (DH) stability, featuring a T80 lifetime exceeding 2,000 hours under continuous illumination and retaining 90% of its initial PCE after 1,000 hours DH test. This advancement is enabled by implementation of the reactive-plasma-deposited (RPD) cerium and hydrogen co-doped indium oxide (ICO:H) recombination layer (RL) that promotes self-assembled monolayers (SAMs) coverage and interfacial charge transfer, and in-situ annealed zinc-doped indium oxide (IZO) front transparent electrode with significantly enhanced optoelectronic and mechanical properties.
|