当前位置: 首页 >> 检索结果
共有 139596 条符合本次的查询结果, 用时 1.9120901 秒

841. A neuronal architecture underlying autonomic dysreflexia.

作者: Jan Elaine Soriano.;Remi Hudelle.;Lois Mahe.;Matthieu Gautier.;Alan Yue Yang Teo.;Michael A Skinnider.;Achilleas Laskaratos.;Steven Ceto.;Claudia Kathe.;Thomas Hutson.;Rebecca Charbonneau.;Fady Girgis.;Steve Casha.;Julien Rimok.;Marcus Tso.;Kelly Larkin-Kaiser.;Nicolas Hankov.;Aasta Gandhi.;Suje Amir.;Xiaoyang Kang.;Yashwanth Vyza.;Eduardo Martin-Moraud.;Stephanie Lacour.;Robin Demesmaeker.;Leonie Asboth.;Quentin Barraud.;Mark A Anderson.;Jocelyne Bloch.;Jordan W Squair.;Aaron A Phillips.;Gregoire Courtine.
来源: Nature. 2025年646卷8087期1167-1177页
Autonomic dysreflexia is a life-threatening medical condition characterized by episodes of uncontrolled hypertension that occur in response to sensory stimuli after spinal cord injury (SCI)1. The fragmented understanding of the mechanisms underlying autonomic dysreflexia hampers the development of therapeutic strategies to manage this condition, leaving people with SCI at daily risk of heart attack and stroke2-5. Here we expose the neuronal architecture that develops after SCI and causes autonomic dysreflexia. In parallel, we uncover a competing, yet overlapping neuronal architecture activated by epidural electrical stimulation of the spinal cord that safely regulates blood pressure after SCI. The discovery that these adversarial neuronal architectures converge onto a single neuronal subpopulation provided a blueprint for the design of a mechanism-based intervention that reversed autonomic dysreflexia in mice, rats and humans with SCI. These results establish a path towards essential pivotal device clinical trials that will establish the safety and efficacy of epidural electrical stimulation for the effective treatment of autonomic dysreflexia in people with SCI.

842. Reduced Atlantic reef growth past 2 °C warming amplifies sea-level impacts.

作者: Chris T Perry.;Didier M de Bakker.;Alice E Webb.;Steeve Comeau.;Ben P Harvey.;Christopher E Cornwall.;Lorenzo Alvarez-Filip.;Esmeralda Pérez-Cervantes.;John Morris.;Ian C Enochs.;Lauren T Toth.;Aaron O'Dea.;Erin M Dillon.;Erik H Meesters.;William F Precht.
来源: Nature. 2025年646卷8085期619-626页
Coral reefs form complex physical structures that can help to mitigate coastal flooding risk1,2. This function will be reduced by sea-level rise (SLR) and impaired reef growth caused by climate change and local anthropogenic stressors3. Water depths above reef surfaces are projected to increase as a result, but the magnitudes and timescales of this increase are poorly constrained, which limits modelling of coastal vulnerability4,5. Here we analyse fossil reef deposits to constrain links between reef ecology and growth potential across more than 400 tropical western Atlantic sites, and assess the magnitudes of resultant above-reef increases in water depth through to 2100 under various shared socioeconomic pathway (SSP) emission scenarios. Our analysis predicts that more than 70% of tropical western Atlantic reefs will transition into net erosional states by 2040, but that if warming exceeds 2 °C (SSP2-4.5 and higher), nearly all reefs (at least 99%) will be eroding by 2100. The divergent trajectories of reef growth and SLR will thus magnify the effects of SLR; increases in water depth of around 0.3-0.5 m above the present are projected under all warming scenarios by 2060, but depth increases of 0.7-1.2 m are predicted by 2100 under scenarios in which warming surpasses 2 °C. This would increase the risk of flooding along vulnerable reef-fronted coasts and modify nearshore hydrodynamics and ecosystems. Reef restoration offers one pathway back to higher reef growth6,7, but would dampen the effects of SLR in 2100 only by around 0.3-0.4 m, and only when combined with aggressive climate mitigation.

843. New Hope in Alzheimer's Research.

作者: Lauren Gravitz.
来源: Nature. 2025年645卷8081期S2页

844. Can Diet and Exercise Really Prevent Alzheimer's?

作者: Sara Harrison.
来源: Nature. 2025年645卷8081期S3-S5页

845. Alzheimer's Drugs Are Finally Tackling the Disease Itself. Here's How.

作者: Esther Landhuis.
来源: Nature. 2025年645卷8081期S6-S9页

846. Controversial New Alzheimer's Drugs Offer Hope-But at a High Cost.

作者: Liz Seegert.
来源: Nature. 2025年645卷8081期S10-S12页

847. The Hidden Link between Racism and Alzheimer's Risk.

作者: Jyoti Madhusoodanan.
来源: Nature. 2025年645卷8081期S19-S23页

848. The Vexing Promise of New Blood Tests for Alzheimer's.

作者: Cassandra Willyard.
来源: Nature. 2025年645卷8081期S13-S15页

849. Can We Fix America's Dementia Care Crisis before It's Too Late?

作者: Tara Haelle.
来源: Nature. 2025年645卷8081期S16-S18页

850. Bring us your LLMs: why peer review is good for AI models.

来源: Nature. 2025年645卷8081期559页

851. AI can learn to show its workings through trial and error.

作者: Daphne Ippolito.;Yiming Zhang.
来源: Nature. 2025年645卷8081期594-595页

852. Bioelectronic implants built from rolled-up stretchy circuits.

作者: Hyunjin Lee.;Dae-Hyeong Kim.
来源: Nature. 2025年645卷8081期600-601页

853. AI is helping to decode animals' speech. Will it also let us talk with them?

作者: Rachel Fieldhouse.
来源: Nature. 2025年645卷8081期574-576页

854. A movable long-term implantable soft microfibre for dynamic bioelectronics.

作者: Ruijie Xie.;Fei Han.;Qianhengyuan Yu.;Dong Li.;Xu Han.;Xiaolong Xu.;Huan Yu.;Jianping Huang.;Xiaomeng Zhou.;Hang Zhao.;Xinping Deng.;Qiong Tian.;Qingsong Li.;Hanfei Li.;Yang Zhao.;Guoyao Ma.;Guanglin Li.;Hairong Zheng.;Meifang Zhu.;Wei Yan.;Tiantian Xu.;Zhiyuan Liu.
来源: Nature. 2025年645卷8081期648-655页
Long-term implantable bioelectronics offer a powerful means to evaluate the function of the nervous system and serve as effective human-machine interfaces1-3. Here, inspired by earthworms, we introduce NeuroWorm-a soft, stretchable and movable fibre sensor designed for bioelectronic interface. Our approach involves rolling to transform 2D bioelectronic devices into 1D NeuroWorm, creating a multifunctional microfibre that houses longitudinally distributed electrode arrays for both bioelectrical and biomechanical monitoring. NeuroWorm effectively records high-quality spatio-temporal signals in situ while steerably advancing within the brain or on the muscle as needed. This allows for the dynamic targeting and shifting of desired monitoring sites. Implanted in muscle through a tiny incision, NeuroWorm provides stable bioelectrical monitoring in rats for more than 43 weeks. Even after 54 weeks of implantation in muscle, fibroblast encapsulation around the fibre remains negligible. Our NeuroWorm represents a platform that promotes a substantial advance in bioelectronics-from an immobile probe fixed in place to active, intelligent and living devices for long-term, minimally invasive and mobile evaluation of the nervous system.

855. Addressing the safety of next-generation batteries.

作者: Chuanbo Yang.;Avtar Singh.;Xiaofei Pu.;Anudeep Mallarapu.;Kandler Smith.;Matt Keyser.;Michael R Haberman.;Hadi Khani.;Pawel Misztal.;Ryan Spray.;Ofodike A Ezekoye.;Donal P Finegan.
来源: Nature. 2025年645卷8081期603-613页
Owing to increasing demand for low-cost energy storage with secure material supply chains, the battery community is approaching a pivotal shift beyond conventional lithium-ion (Li-ion) towards next-generation cells. Technologies that include alkali-metal anodes, solid electrolytes and earth-abundant materials such as sodium (Na) and sulfur (S) are reaching commercialization in cells. The abuse tolerance and thermal runaway hazards of such technologies diverge from conventional Li-ion cells. Consequently, designing safe batteries with next-generation materials requires a holistic approach to characterize cells and to understand their responses to abuse conditions from the beginning to the end of life. Here we provide a Perspective on how the safety and abuse tolerance of cells are likely to change for up-and-coming technologies; challenges and opportunities for reimagining safe cell and battery designs; gaps in our knowledge; capabilities for understanding the hazards of thermal runaway and how to address them; how standard abuse tests may need to adapt to new challenges; and how research needs to support affected professionals, from pack designers to first responders, to manage hazards and ensure safe roll-out of next-generation cells into applications like electric vehicles (EVs). Finally, given the large number of next-generation technologies being explored, we encourage giving priority to safety-focused research in proportion to the rate of manufacturing scale-up of each specific technology.

856. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.

作者: Daya Guo.;Dejian Yang.;Haowei Zhang.;Junxiao Song.;Peiyi Wang.;Qihao Zhu.;Runxin Xu.;Ruoyu Zhang.;Shirong Ma.;Xiao Bi.;Xiaokang Zhang.;Xingkai Yu.;Yu Wu.;Z F Wu.;Zhibin Gou.;Zhihong Shao.;Zhuoshu Li.;Ziyi Gao.;Aixin Liu.;Bing Xue.;Bingxuan Wang.;Bochao Wu.;Bei Feng.;Chengda Lu.;Chenggang Zhao.;Chengqi Deng.;Chong Ruan.;Damai Dai.;Deli Chen.;Dongjie Ji.;Erhang Li.;Fangyun Lin.;Fucong Dai.;Fuli Luo.;Guangbo Hao.;Guanting Chen.;Guowei Li.;H Zhang.;Hanwei Xu.;Honghui Ding.;Huazuo Gao.;Hui Qu.;Hui Li.;Jianzhong Guo.;Jiashi Li.;Jingchang Chen.;Jingyang Yuan.;Jinhao Tu.;Junjie Qiu.;Junlong Li.;J L Cai.;Jiaqi Ni.;Jian Liang.;Jin Chen.;Kai Dong.;Kai Hu.;Kaichao You.;Kaige Gao.;Kang Guan.;Kexin Huang.;Kuai Yu.;Lean Wang.;Lecong Zhang.;Liang Zhao.;Litong Wang.;Liyue Zhang.;Lei Xu.;Leyi Xia.;Mingchuan Zhang.;Minghua Zhang.;Minghui Tang.;Mingxu Zhou.;Meng Li.;Miaojun Wang.;Mingming Li.;Ning Tian.;Panpan Huang.;Peng Zhang.;Qiancheng Wang.;Qinyu Chen.;Qiushi Du.;Ruiqi Ge.;Ruisong Zhang.;Ruizhe Pan.;Runji Wang.;R J Chen.;R L Jin.;Ruyi Chen.;Shanghao Lu.;Shangyan Zhou.;Shanhuang Chen.;Shengfeng Ye.;Shiyu Wang.;Shuiping Yu.;Shunfeng Zhou.;Shuting Pan.;S S Li.;Shuang Zhou.;Shaoqing Wu.;Tao Yun.;Tian Pei.;Tianyu Sun.;T Wang.;Wangding Zeng.;Wen Liu.;Wenfeng Liang.;Wenjun Gao.;Wenqin Yu.;Wentao Zhang.;W L Xiao.;Wei An.;Xiaodong Liu.;Xiaohan Wang.;Xiaokang Chen.;Xiaotao Nie.;Xin Cheng.;Xin Liu.;Xin Xie.;Xingchao Liu.;Xinyu Yang.;Xinyuan Li.;Xuecheng Su.;Xuheng Lin.;X Q Li.;Xiangyue Jin.;Xiaojin Shen.;Xiaosha Chen.;Xiaowen Sun.;Xiaoxiang Wang.;Xinnan Song.;Xinyi Zhou.;Xianzu Wang.;Xinxia Shan.;Y K Li.;Y Q Wang.;Y X Wei.;Yang Zhang.;Yanhong Xu.;Yao Li.;Yao Zhao.;Yaofeng Sun.;Yaohui Wang.;Yi Yu.;Yichao Zhang.;Yifan Shi.;Yiliang Xiong.;Ying He.;Yishi Piao.;Yisong Wang.;Yixuan Tan.;Yiyang Ma.;Yiyuan Liu.;Yongqiang Guo.;Yuan Ou.;Yuduan Wang.;Yue Gong.;Yuheng Zou.;Yujia He.;Yunfan Xiong.;Yuxiang Luo.;Yuxiang You.;Yuxuan Liu.;Yuyang Zhou.;Y X Zhu.;Yanping Huang.;Yaohui Li.;Yi Zheng.;Yuchen Zhu.;Yunxian Ma.;Ying Tang.;Yukun Zha.;Yuting Yan.;Z Z Ren.;Zehui Ren.;Zhangli Sha.;Zhe Fu.;Zhean Xu.;Zhenda Xie.;Zhengyan Zhang.;Zhewen Hao.;Zhicheng Ma.;Zhigang Yan.;Zhiyu Wu.;Zihui Gu.;Zijia Zhu.;Zijun Liu.;Zilin Li.;Ziwei Xie.;Ziyang Song.;Zizheng Pan.;Zhen Huang.;Zhipeng Xu.;Zhongyu Zhang.;Zhen Zhang.
来源: Nature. 2025年645卷8081期633-638页
General reasoning represents a long-standing and formidable challenge in artificial intelligence (AI). Recent breakthroughs, exemplified by large language models (LLMs)1,2 and chain-of-thought (CoT) prompting3, have achieved considerable success on foundational reasoning tasks. However, this success is heavily contingent on extensive human-annotated demonstrations and the capabilities of models are still insufficient for more complex problems. Here we show that the reasoning abilities of LLMs can be incentivized through pure reinforcement learning (RL), obviating the need for human-labelled reasoning trajectories. The proposed RL framework facilitates the emergent development of advanced reasoning patterns, such as self-reflection, verification and dynamic strategy adaptation. Consequently, the trained model achieves superior performance on verifiable tasks such as mathematics, coding competitions and STEM fields, surpassing its counterparts trained through conventional supervised learning on human demonstrations. Moreover, the emergent reasoning patterns exhibited by these large-scale models can be systematically used to guide and enhance the reasoning capabilities of smaller models.

857. High-density soft bioelectronic fibres for multimodal sensing and stimulation.

作者: Muhammad Khatib.;Eric Tianjiao Zhao.;Shiyuan Wei.;Jaeho Park.;Alex Abramson.;Estelle Spear Bishop.;Anne-Laure Thomas.;Chih-Hsin Chen.;Pamela Emengo.;Chengyi Xu.;Ryan Hamnett.;Samuel E Root.;Lei Yuan.;Matthias J Wurdack.;Tomasz Zaluska.;Yeongjun Lee.;Kostas Parkatzidis.;Weilai Yu.;Dorine Chakhtoura.;Kyun Kyu Kim.;Donglai Zhong.;Yuya Nishio.;Chuanzhen Zhao.;Can Wu.;Yuanwen Jiang.;Anqi Zhang.;Jinxing Li.;Weichen Wang.;Fereshteh Salimi-Jazi.;Talha A Rafeeqi.;Nofar Mintz Hemed.;Jeffrey B-H Tok.;Xiang Qian.;Xiaoke Chen.;Julia A Kaltschmidt.;James C Y Dunn.;Zhenan Bao.
来源: Nature. 2025年645卷8081期656-664页
There is an increasing demand for multimodal sensing and stimulation bioelectronic fibres for both research and clinical applications1,2. However, existing fibres suffer from high rigidity, low component layout precision, limited functionality and low density of active components. These limitations arise from the challenge of integrating many components into one-dimensional fibre devices, especially owing to the incompatibility of conventional microfabrication methods (for example, photolithography) with curved, thin and long fibre structures2. As a result, limited applications have been demonstrated so far. Here we use 'spiral transformation' to convert two-dimensional thin films containing microfabricated devices into one-dimensional soft fibres. This approach allows for the fabrication of high-density multimodal soft bioelectronic fibres, termed Spiral-NeuroString (S-NeuroString), while enabling precise control on the longitudinal, angular and radial positioning and distribution of the functional components. Taking advantage of the biocompatibility of our soft fibres with the dynamic and soft gastrointestinal system, we proceed to show the feasibility of our S-NeuroString for post-operative multimodal continuous motility mapping and tissue stimulation in awake pigs. We further demonstrate multi-channel single-unit electrical recording in mouse brain for up to 4 months, and a fabrication capability to produce 1,280 channels within a 230-μm-diameter soft fibre. Our soft bioelectronic fibres offer a powerful platform for minimally invasive implantable electronics, where diverse sensing and stimulation functionalities can be effectively integrated.

858. This AI tool predicts your risk of 1,000 diseases - by looking at your medical records.

作者: Shamini Bundell.;Nick Petrić Howe.
来源: Nature. 2025年

859. Which diseases will you have in 20 years? This AI accurately predicts your risks.

作者: Gemma Conroy.
来源: Nature. 2025年

860. My career switch from psychologist to open-science advocate.

作者: Esme Hedley.
来源: Nature. 2025年
共有 139596 条符合本次的查询结果, 用时 1.9120901 秒