641. New Compounds with Enhanced Biological Activity Through the Strategic Introduction of Silylated Groups into Hydroxystearic Acids.
作者: Chiara Zalambani.;Lorenzo Anconelli.;Natalia Calonghi.;Dario Telese.;Gabriele Micheletti.;Carla Boga.;Giovanna Farruggia.;Eleonora Pagnotta.
来源: Molecules. 2025年30卷3期
In the field of medicinal chemistry, the introduction of silylated groups is an important strategy to alter the activity, selectivity, and pharmacokinetics of compounds based on the diverse traits of silicon, including atomic size, electronegativity, and hydrophobicity. The hydroxy group on C-9 or C-9 and C-10 of hydroxystearic acids have been functionalized as t-butyl dimethyl silyl ether. The target compounds have been fully characterized and tested for in vitro cytotoxicity in tumor cells HT29, HCT116, CaCo2, HeLa, MCF7, U2OS, and Jurkat J6 and normal I407 cells. In particular, the silyl derivative of (R)-9-hydroxystearic acid was more active in colon cancer cells. Analyses of cell proliferation, oxidative cell status, histones post-translational modifications, protein phosphorylation, gene expression, and DNA damage were performed to obtain information on the antitumor properties of the new molecules in comparison with the unmodified (R)-9-hydroxystearic acid's previously studied effects. Our results suggest that the incorporation of a silyl functionality may be a useful tool for the structural development of new pharmaceutically active compounds against colon cancer.
642. Quantitative Proteomic Analysis of Lysine Malonylation in Response to Salicylic Acid in the Roots of Platycodon grandiflorus.
作者: Wanyue Ding.;Yingying Duan.;Yuqing Wang.;Jizhou Fan.;Weiyi Rao.;Shihai Xing.
来源: Int J Mol Sci. 2025年26卷3期
Salicylic acid, as a plant hormone, significantly affects the physiological and biochemical indexes of soluble sugar, malondialdehyde content, peroxidase, and superoxide dismutase enzyme activity in Platycodon grandiflorus. Lysine malonylation is a post-translational modification that involves various cellular functions in plants, though it is rarely studied, especially in medicinal plants. In this study, the aim was to perform a comparative quantitative proteomic study of malonylation modification on P. grandiflorus root proteins after salicylic acid treatment using Western blot with specific antibodies, affinity enrichment and LC-MS/MS analysis methods. The analysis identified 1907 malonyl sites for 809 proteins, with 414 proteins and 798 modification sites quantified with high confidence. Post-treatment, 361 proteins were upregulated, and 310 were downregulated. Bioinformatics analysis revealed that malonylation in P. grandiflorus is primarily involved in photosynthesis and carbon metabolism. Physiological and biochemical analysis showed that salicylic acid treatment increased the malondialdehyde levels, soluble protein, superoxide dismutase, and peroxidase activity but did not significantly affect the total saponins content in P. grandiflorus. These findings provide an important basis for exploring the molecular mechanisms of P. grandiflorus following salicylic acid treatment and enhance understanding of the biological function of protein lysine malonylation in plants.
643. Rubiadin Mediates the Upregulation of Hepatic Hepcidin and Alleviates Iron Overload via BMP6/SMAD1/5/9-Signaling Pathway.
作者: Xueting Xie.;Linyue Chang.;Xinyue Zhu.;Fengbei Gong.;Linlin Che.;Rujun Zhang.;Lixin Wang.;Chenyuan Gong.;Cheng Fang.;Chao Yao.;Dan Hu.;Weimin Zhao.;Yufu Zhou.;Shiguo Zhu.
来源: Int J Mol Sci. 2025年26卷3期
Iron overload disease is characterized by the excessive accumulation of iron in the body. To better alleviate iron overload, there is an urgent need for safe and effective small molecule compounds. Rubiadin, the active ingredient derived from the Chinese herb Prismatomeris tetrandra, possesses notable anti-inflammatory and hepatoprotective properties. Nevertheless, its impact on iron metabolism remains largely unexplored. To determine the role of rubiadin on iron metabolism, Western blot analysis, real-time PCR analysis, and the measurement of serum iron were performed. Herein, we discovered that rubiadin significantly downregulated the expression of transferrin receptor 1, ferroportin 1, and ferritin light chain in ferric-ammonium-citrate-treated or -untreated HepG2 cells. Moreover, intraperitoneal administration of rubiadin remarkably decreased serum iron and duodenal iron content and upregulated expression of hepcidin mRNA in the livers of high-iron-fed mice. Mechanistically, bone morphogenetic protein 6 (BMP6) inhibitor LDN-193189 completely reversed the hepcidin upregulation and suppressor of mother against decapentaplegic 1/5/9 (SMAD1/5/9) phosphorylation induced by rubiadin. These results suggested that rubiadin increased hepcidin expression through the BMP6/SMAD1/5/9-signaling pathway. Collectively, our findings uncover a crucial mechanism through which rubiadin modulates iron metabolism and highlight it as a potential natural compound for alleviating iron-overload-related diseases.
644. The Silencing of the StPAM16-1 Gene Enhanced the Resistance of Potato Plants to the Phytotoxin Thaxtomin A.
作者: Lu Liu.;Shuangwei Song.;Ning Liu.;Zhiqin Wang.;Yonglong Zhao.;Naiqin Zhong.;Pan Zhao.;Haiyun Wang.
来源: Int J Mol Sci. 2025年26卷3期
Potato common scab (CS) caused by Streptomyces scabiei is a severe disease that threatens tuber quality and its market value. To date, little is known about the mechanism regulating the resistance of potato to CS. In this study, we identified a presequence translocase-associated motor 16 gene from potato (designated StPAM16-1) that is involved in the response to the phytotoxin thaxtomin A (TA) secreted by S. scabiei. The StPAM16-1 protein was localized in the mitochondria, and the expression of the gene was upregulated in potato leaves treated with TA. The suppression of StPAM16-1 in potato led to enhanced resistance to TA and S. scabiei. Protein interaction analyses revealed that StPAM16-1 interacted with the subunit 5b of the COP9 signalosome complex (StCSN5). Similar to that of StPAM16-1, the expression levels of StCSN5 significantly increased in potato leaves treated with TA. These results indicated that StPAM16-1 acted as a negative regulator and was functionally associated with StCSN5 in the immune response of potato plants against CS. Our study sheds light on the molecular mechanism by which PAM16 participates in the plant immune response. Furthermore, both StPAM16-1 and StCSN5 could be potential target genes in the molecular breeding of potato cultivars with increased resistance to CS.
645. Transcriptomic and Phenotypic Responses of Cucumber Trichome Density to Silver Nitrate and Sodium Thiosulfate Application.
作者: Muhammad Ahmad.;Sen Li.;Li Shan.;Songlin Yang.;Yaru Wang.;Shanshan Fan.;Menghang An.;Yingqi Shi.;Yifan Xu.;Tiantian Pei.;Xinyue Ma.;Yibing Zhao.;Hao Xue.;Xingwang Liu.;Huazhong Ren.
来源: Int J Mol Sci. 2025年26卷3期
Cucumber (Cucumis sativus L.) is one of the most widely cultivated crops worldwide and is valued for its nutritional, economic, and ecological benefits. The regulation of defense mechanisms against herbivores, along with osmotic loss and environmental regulation, is greatly affected by trichomes in cucumbers. In this study, we attempted to characterize trichomes and examined fruit physiological and transcriptome profiles by RNA sequencing in cucumber breeding lines 6101-4 and 5634-1 at three stages of fruit development through foliar application with a combination of silver nitrate (AgNO3) and sodium thiosulfate (Na2S2O3) in comparison to non-treated controls. Notable increases in the number of trichomes and altered forms were observed for both inbred cultivars 6101-4 and 5634-1 against foliar application of chemical substances. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) involved in multiple pathways in cucumber trichome formation. The enrichment of differentially expressed transcripts showed that foliar application upregulated the expression of many stress-responsive and trichome-associated genes including plant hormone signal transduction, sesquiterpenoid and triterpenoid biosynthesis, and the mitogen-activated protein kinase (MAPK) signaling pathway. The dominant regulatory genes, such as allene oxide synthase (AOS) and MYB1R1 transcription factor, exhibited significant modulations in their expression in response to chemical application. The RNA-seq results were further confirmed by RT-PCR-based analysis, which revealed that after chemical application, the dominant regulatory genes, such as allene oxide synthase (AOS), PTB 19, MYB1R1, bHLH62-like, MADS-box transcription factor, and salicylic acid-binding protein 2-like, were differentially expressed, implying that these DEGs involved in multiple pathways are involved the positive regulation of the initiation and development of trichomes in C. sativus. A comparison of trichome biology and associated gene expression regulation in other plant species has shown that silver nitrate (AgNO3) and sodium thiosulfate (Na2S2O3) are also responsible for hormonal and signaling pathway regulation. This study improves our knowledge of the molecular mechanisms involved in C. sativus trichome development. It also emphasizes the possibility of utilizing chemical composition to modulate C. sativus trichome-related characteristics of C. sativus, leading to the improvement of plant defense mechanisms as well as environmental adaptation.
646. Exploring the Impact of Microgravity on Gene Expression: Dysregulated Pathways and Candidate Repurposed Drugs.
Space exploration has progressed from contemporary discoveries to current endeavors, such as space tourism and Mars missions. As human activity in space accelerates, understanding the physiological effects of microgravity on the human body is becoming increasingly critical. This study analyzes transcriptomic data from human cell lines exposed to microgravity, investigates its effects on gene expression, and identifies potential therapeutic interventions for health challenges posed by spaceflight. Our analysis identified five under-expressed genes (DNPH1, EXOSC5, L3MBTL2, LGALS3BP, SPRYD4) and six over-expressed genes (CSGALNACT2, CSNK2A2, HIPK1, MBNL2, PHF21A, RAP1A), all of which exhibited distinct expression patterns in response to microgravity. Enrichment analysis highlighted significant biological functions influenced by these conditions, while in silico drug repurposing identified potential modulators that could counteract these changes. This study introduces a novel approach to addressing health challenges during space missions by repurposing existing drugs and identifies specific genes and pathways as potential biomarkers for microgravity effects on human health. Our findings represent the first systematic effort to repurpose drugs for spaceflight, establishing a foundation for the development of targeted therapies for astronauts. Future research should aim to validate these findings in authentic space environments and explore broader biological impacts.
647. The Flavonoid Agathisflavone Attenuates Glia Activation After Mechanical Injury of Cortical Tissue and Negatively Regulates Both NRLP3 and IL-1β Expression.
作者: Verônica Moreira de Sousa.;Áurea Maria Alves Nunes Almeida.;Rafael Short Ferreira.;Balbino Lino Dos Santos.;Victor Diogenes Amara da Silva.;Jorge Mauricio David.;Cleonice Creusa Dos Santos.;Silvia Lima Costa.
来源: Int J Mol Sci. 2025年26卷3期
Traumatic brain injury (TBI) has a complex and multifactorial pathology and is a major cause of death and disability for humans. Immediately after TBI, astrocytes and microglia react with complex morphological and functional changes known as reactive gliosis to form a glial scar in the area immediately adjacent to the lesion, which is the major barrier to neuronal regeneration. The flavonoid agathisflavone (bis-apigenin), present in Poincianella pyramidalis leaves, has been shown to have neuroprotective, neurogenic, and anti-inflammatory effects, demonstrated in vitro models of glutamate-induced toxicity, neuroinflammation, and demyelination. In this study, we evaluated the effect and mechanisms of agathisflavone in neuronal integrity and in the modulation of gliosis in an ex vivo model of TBI. For this, microdissections from the encephalon of Wistar rats (P6-8) were prepared and subjected to mechanical injury (MI) and treated or not with daily agathisflavone (5 μM) for 3 days. Astrocyte reactivity was investigated by measuring mRNA and expression of GFAP protein in the lesioned area by immunofluorescence and Western blot. The proportion of microglia was determined by immunofluorescence for Iba-1; mRNA expression for inflammasome NRPL3 and interleukin-1 beta (IL-1β) was determined by RT-qPCR. It was observed that lesions in the cortical tissue induced astrocytes overexpressing GFAP in the typical glial scar formed and that agathisflavone modulated GFAP expression at the transcriptional and post-transcriptional levels, which was associated with a reduction of the glial scar. MI induced an increase in the proportion of microglia (Iba-1+), which was not observed in agathisflavone-treated cultures. Moreover, the flavonoid modulated negatively both the NRLP3 and IL-1β mRNA expression that was increased in the lesioned area of the tissue. These findings support the regulatory properties of agathisflavone in the control of the inflammatory response in glial cells, which can impact neuroprotection and should be considered for future studies for TB and other pathological conditions of the central nervous system.
648. mRNA Degradation as a Therapeutic Solution for Mucopolysaccharidosis Type IIIC: Use of Antisense Oligonucleotides to Promote Downregulation of Heparan Sulfate Synthesis.
作者: Juliana Inês Santos.;Mariana Gonçalves.;Matilde Barbosa Almeida.;Hugo Rocha.;Ana Joana Duarte.;Liliana Matos.;Luciana Vaz Moreira.;Marisa Encarnação.;Paulo Gaspar.;Maria João Prata.;Maria Francisca Coutinho.;Sandra Alves.
来源: Int J Mol Sci. 2025年26卷3期
Mucopolysaccharidosis type IIIC is a neurodegenerative lysosomal storage disorder (LSD) characterized by the accumulation of undegraded heparan sulfate (HS) due to the lack of an enzyme responsible for its degradation: acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT). Classical treatments are ineffective. Here, we attempt a new approach in genetic medicine, genetic substrate reduction therapy (gSRT), to counteract this neurological disorder. Briefly, we used synthetic oligonucleotides, particularly gapmer antisense oligonucleotides (ASOs), to target the synthesis of the accumulated compounds at the molecular level, downregulating a specific gene involved in the first step of HS biosynthesis, XYLT1. Our goal was to reduce HS production and, consequently, its accumulation. Initially, five gapmer ASOs were designed and their potential to decrease XYLT1 mRNA levels were tested in patient-derived fibroblasts. Subsequent analyses focused on the two best performing molecules alone. The results showed a high inhibition of the XYLT1 gene mRNA (around 90%), a decrease in xylosyltransferase I (XT-I) protein levels and a reduction in HS storage 6 and 10 days after transfection (up to 21% and 32%, respectively). Overall, our results are highly promising and may represent the initial step towards the development of a potential therapeutic option not only for MPS IIIC, but virtually for every other MPS III form. Ultimately, the same principle may also apply to other neuropathic MPS.
649. JQ1 Treatment and miR-21 Silencing Activate Apoptosis of CD44+ Oral Cancer Cells.
作者: Milica Jaksic Karisik.;Milos Lazarevic.;Dijana Mitic.;Olivera Mitrovic Ajtic.;Giuseppe Damante.;Jelena Milasin.
来源: Int J Mol Sci. 2025年26卷3期
Oral cancer ranks in the top 10 most prevalent malignancies worldwide. It is an aggressive tumor with frequent relapses and metastases and relatively modest survival rates that do not improve in spite of constantly evolving treatment modalities. Cancer stem cells are a subpopulation of tumor cells considered to be responsible not only for tumor initiation but also its aggressive behavior. Many efforts are directed at targeting those cells specifically. A class of small molecules, inhibitors of BET proteins (iBET), is emerging as a novel anticancer tool. Modulating the expression of microRNAs could also be a valid approach in cancer therapy. We aimed to study the effect of the iBET JQ1 combined with miR-21 silencing on oral cancer stem cells (CD44+ cells). CD44+ cells were sorted by flow cytometry and treated with JQ1 alone or in combination with miRNA-21 silencing. Following treatment, MTT, spheroid formation, invasion, and annexin V assays were performed, along with cell cycle and gene expression analyses. JQ1 in conjunction with miR-21 silencing showed considerable cytotoxicity led to a significant downregulation of cyclin D1, consistent with G1 cell cycle arrest, a significant caspase 3 upregulation in accordance with activation of apoptosis. The combined treatment approach also reduced CD44+ cell invasion capacity. Modulating chromatin structure with iBETs and silencing miRNA could be suitable epigenetic adjuncts to oral cancer treatment.
650. p21 Promoter Methylation Is Vital for the Anticancer Activity of Withaferin A.
Breast cancer (BC) is a widespread malignancy that affects the lives of millions of women each year, and its resulting financial and healthcare hardships cannot be overstated. These issues, in combination with side effects and obstacles associated with the current standard of care, generate considerable interest in new potential targets for treatment as well as means for BC prevention. One potential preventive compound is Withaferin A (WFA), a traditional medicinal compound found in winter cherries. WFA has shown promise as an anticancer agent and is thought to act primarily through its effects on the epigenome, including, in particular, the methylome. However, the relative importance of specific genes' methylation states to WFA function remains unclear. To address this, we utilized human BC cell lines in combination with CRISPR-dCas9 fused to DNA methylation modifiers (i.e., epigenetic editors) to elucidate the importance of specific genes' promoter methylation states to WFA function and cancer cell viability. We found that targeted demethylation of promoters of the tumor suppressors p21 and p53 within MDA-MB-231/MCF7 cells resulted in around 1.7×/1.5× and 1.2×/1.3× increases in expression, respectively. Targeted methylation of the promoter of the oncogene CCND1 within MDA-MB-231/MCF7 cells resulted in 0.5×/0.8× decreases in gene expression. These changes to p21, p53, and CCND1 were also associated with decreases in cell viability of around 25%/50%, 5%/35%, and 12%/16%, respectively, for MDA-MB-231/MCF7 cells. When given in combination with WFA in both p53 mutant and wild type cells, we discovered that targeted methylation of the p21 promoter was able to modulate the anticancer effects of WFA, while targeted methylation or demethylation of the promoters of p53 and CCND1 had no significant effect on viability decreases from WFA treatment. Taken together, these results indicate that p21, p53, and CCND1 may be important targets for future in vivo studies that may lead to epigenetic editing therapies and that WFA may have utility in the prevention of BC through its effect on p21 promoter methylation independent of p53 function.
651. Lipids Metabolism Inhibition Antiproliferative Synergy with 5-Fluorouracil in Human Colorectal Cancer Model.
作者: Judyta Zabielska.;Ewa Stelmanska.;Sylwia Szrok-Jurga.;Jarosław Kobiela.;Aleksandra Czumaj.
来源: Int J Mol Sci. 2025年26卷3期
Colorectal cancer (CRC) is recognized as the third most lethal cancer worldwide. While existing treatment options demonstrate considerable efficacy, they are often constrained by non-selectivity and substantial side effects. Recent studies indicate that lipid metabolism significantly influences carcinogenesis, highlighting it as a promising avenue for developing targeted anticancer therapies. The purpose of the study was to see if acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and stearoyl-CoA 9-desaturase (SCD1) are good metabolic targets and whether the use of inhibitors of these enzymes together with 5-fluorouracil (5-FU) would have a synergistic effect on CRC cell viability. To confirm that the correct lipid targets were chosen, the expression levels of ACAT1, HMGCR, and SCD1 were examined in CRC patients and cell models. At first, each compound (Avasimibe, Lovastatin, MF-438, and 5-FU was tested separately, and then each inhibitor was paired with 5-FU to assess the synergistic effect on cell viability. Gene expression of selected enzymes significantly increased in tissue samples obtained from CRC patients and cancer cell lines (HT-29). Inhibition of any of the selected enzymes reduced CRC cell growth in a dose-dependent manner. More importantly, the combination of 5-FU + Avasimibe (an ACAT1 inhibitor) and 5-FU + MF-438 (an SCD1 inhibitor) produced a stronger antiproliferative effect than the inhibitors alone. 5-FU combined either with Avasimibe or MF-438 showed a synergistic effect with an HSA score of 47.00 at a dose of 0.3 + 30 µM, respectively (2.66% viability rate vs. 46%; p < 0.001), and 39.34 at a dose of 0.3 + 0.06 µM (46% vs. 10.33%; p < 0.001), respectively. The association of 5-FU with Lovastatin (HMGCR inhibitor) did not significantly impact CRC cell viability in a synergistic manner. Inhibition of lipid metabolism combined with standard chemotherapy is a promising strategy that reduces CRC cell viability and allows for the use of a lower drug dose. The combination of 5-FU and Avasimibe has the greatest therapeutic potential among studied compounds.
652. Melatonin Mitigates Acidosis-Induced Neuronal Damage by Up-Regulating Autophagy via the Transcription Factor EB.
作者: Yan Shi.;Zhaoyu Mi.;Wei Zhao.;Yue Hu.;Hui Xiang.;Yaoxue Gan.;Shishan Yuan.
来源: Int J Mol Sci. 2025年26卷3期
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate acidosis, and a photothrombotic (PT) infarction model was used to establish an animal model of cerebral ischemia of male C57/BL6J mice. Both in vivo and in vitro studies demonstrated that acidosis increased cytoplasmic transcription factor EB (TFEB) levels, reduced nuclear TFEB levels, and suppressed autophagy, as evidenced by elevated p62 levels, a higher LC3-II/LC3-I ratio, decreased synapse-associated proteins (PSD-95 and synaptophysin), and increased neuronal apoptosis. In contrast, melatonin promoted the nuclear translocation of TFEB, enhanced autophagy, and reversed neuronal apoptosis. Moreover, the role of TFEB in melatonin's neuroprotective effects was validated by modulating TFEB nuclear translocation. In conclusion, melatonin mitigates acidosis-induced neuronal damage by promoting the nuclear translocation of TFEB, thereby enhancing autophagy. These findings offer new insights into potential treatments for acidosis.
653. The Establishment of Artificial RNA Cascade Circuits for Gene Regulation Based on Doxycycline-Induced Pre-mRNA Alternative Splicing.
This study developed an artificial chimeric intron module with an RNA riboswitch and TetR aptamer that were integrated into essential gene exons. Doxycycline can modulate Pre-mRNA alternative splicing, modify the exon reading frame, and dynamically regulate gene expression. By shifting the aptamer 2 base pair within the switch, we unexpectedly obtained the "on-switch" CTM and "off-switch" C2ITetR>4A, which possess thoroughly contrasting regulatory functions. The CTM module can conditionally induce tumor cell apoptosis and regulate genes reversibly and sustainably following doxycycline induction. We integrated the C2ITetR>4A/CTM switches with the L7Ae/k-turn module to create an intron-spliced double-switched RNA cascade system. The system can both activate and inhibit the splicing mechanism utilizing the same ligand to minimize crosstalk among aptamer switching elements, control target gene leakage, and enhance the dynamic range of gene expression. We analyzed numerous factors affecting Pre-mRNA splicing to identify the optimal equilibrium point for switch regulation. This will enable precise predictions of dynamic regulatory efficiency and the rational design of genetic modules, thereby providing a valuable instrument for mammalian synthetic biology.
654. The Role of Elacridar, a P-gp Inhibitor, in the Re-Sensitization of PAC-Resistant Ovarian Cancer Cell Lines to Cytotoxic Drugs in 2D and 3D Cell Culture Models.
作者: Piotr Stasiak.;Justyna Sopel.;Julia Maria Lipowicz.;Agnieszka Anna Rawłuszko-Wieczorek.;Jan Korbecki.;Radosław Januchowski.
来源: Int J Mol Sci. 2025年26卷3期
Chemotherapy resistance is a significant barrier to effective cancer treatment. A key mechanism of resistance at the single-cell level is the overexpression of drug transporters in the ABC family, particularly P-glycoprotein (P-gp), which leads to multidrug resistance (MDR). Inhibitors of these transporters can help re-sensitize cancer cells to chemotherapeutics. This study evaluated elacridar (GG918 and GF120918), a potent third-generation P-gp inhibitor, for its ability to reverse MDR in paclitaxel (PAC)-resistant ovarian cancer cell lines. Sensitive and PAC-resistant cells were cultured in two-dimensional (2D) and three-dimensional (3D) models. MDR1 gene expression was analyzed using Q-PCR, and P-gp protein expression was examined via Western blot and immunofluorescence. Drug sensitivity was evaluated with MTT assays, and P-gp activity was analyzed by flow cytometry and fluorescence microscopy. Elacridar effectively inhibited P-gp activity and increased sensitivity to PAC and doxorubicin (DOX) in 2D cultures but not cisplatin (CIS). In 3D spheroids, P-gp activity inhibition was observed via Calcein-AM staining. However, no re-sensitization to PAC occurred and limited improvement was observed for DOX. These findings suggest that elacridar effectively inhibits P-gp in both 2D and 3D conditions. However, its ability to overcome drug resistance in 3D models is limited, highlighting the complexity of tissue-specific resistance mechanisms.
655. Characterization of Main Responsive Genes Reveals Their Regulatory Network Attended by Multi-Biological Metabolic Pathways in Paclobutrazol (PAC)-Modulated Grape Seed Development (GSD) at the Stone-Hardening Stage.
作者: Rana Badar Aziz.;Ji Wei.;Qiqi Wu.;Siyan Song.;Hui Yang.;Xinpeng Chen.;Ying Wang.;Ruiqiang Chao.;Naila Mir Baz.;Haitao Chen.;Yuxuan Song.;Jinggui Fang.;Chen Wang.
来源: Int J Mol Sci. 2025年26卷3期
Paclobutrazol (PAC) is a significant inhibitor of gibberellin biosynthesis that profoundly influences grape seed development (GSD) through the modulation of key molecular pathways. Here, we identified 6659 differentially expressed genes (DEGs) in GSD under PAC treatment, with 3601 up-regulated and 3058 down-regulated. An analysis of hormone-associated DEGs revealed that auxin-related genes (16) were the most up-regulated, followed by genes associated with brassinosteroid and ABA. In contrast, cytokinin- and gibberellin-related genes exhibited a suppressive response. PAC treatment also triggered extensive reprogramming of metabolic pathways, including 44 genes involved in starch and sucrose metabolism (24 up-regulated, 20 down-regulated), 101 cell wall-related genes (53 up-regulated, 48 down-regulated), and 110 transcription factors (77 up-regulated, 33 down-regulated). A cis-element analysis of the promoters of 76 hormone-responsive genes identified 14 types of hormone-responsive cis-elements, with ABRE being the most prevalent. Genes responsible for inactivating active hormones, such as ABA-VvPP2CA, IAA-VvGH3.1, and CK-VvARR9-1, were also identified. Concurrently, PAC negatively regulated hormone-active genes, including BR-VvXTH25, SA-VvTGA21-3, and JA-VvTIFY3B, leading to reduced levels of these hormones. PAC modulates GSD by mediating the dynamic balance of multi-hormone accumulations. Furthermore, development-related cis-elements such as the AACA-motif, AAGAA-motif, AC-I, AC-II, O2-site, as-1, CAT-box, CCAAT-box, circadian, GCN4-motif, RY-element, HD-Zip 1, HD-Zip 3, MSA-like, MYB-like sequence, MYB-binding site, and MYB recognition site, were found in key DEGs involved in starch and sucrose metabolism, cell wall remodeling, and epigenetic regulation. This indicates that these pathways are responsive to PAC modulation during GSD. Finally, we developed a comprehensive regulatory network to illustrate the PAC-mediated pathways involved in GSD. This network integrates multi-hormonal signaling, cell wall remodeling, epigenetic regulation, and transcription factors, highlighting PAC's pivotal role in GSD. Our findings provide new insights into the complex mechanisms underlying PAC's effects on grapevine development.
656. Coumarin Promotes Hypocotyl Elongation by Increasing the Synthesis of Brassinosteroids in Plants.
作者: Siqi Liu.;Aolin Ma.;Jie Li.;Zhixuan Du.;Longfei Zhu.;Guanping Feng.
来源: Int J Mol Sci. 2025年26卷3期
Coumarins are natural products commonly found in plants and are typical allelopathic substances that strongly affect the growth of plants after being exudated from the root and help plants absorb Fe in cases of iron deficiency. Although coumarins have been found to have multiple effects, this understanding is still relatively limited. Here, we show that coumarin significantly promotes the elongation of the hypocotyl by enhancing cell elongation. Further research has found that coumarin increases the content of BR in plants by enhancing the expression of brassinosteroid (BR) synthesis genes. The effect of coumarin on promoting hypocotyl elongation is completely blocked by the mutation of the BR synthesis gene DEETIOLATED 2 (DET2) or the co-addition of the BR synthesis inhibitor brassinazole (BRZ). Genetic analysis using Arabidopsis mutants showed that coumarin promoting hypocotyl elongation depends on the signaling pathway of the BRs. Overall, coumarin promotes elongation of the hypocotyl by increasing the synthesis of BRs in plants. These results provide us with new insights into the role of coumarins and offer strong theoretical support for the mechanisms of interactions between plants.
657. Phenotypic and Gene Expression Alterations in Aquatic Organisms Exposed to Microplastics.
作者: Yun Ju Lee.;Woo Ryung Kim.;Eun Gyung Park.;Du Hyeong Lee.;Jung-Min Kim.;Hyeon-Su Jeong.;Hyun-Young Roh.;Yung Hyun Choi.;Vaibhav Srivastava.;Anshuman Mishra.;Heui-Soo Kim.
来源: Int J Mol Sci. 2025年26卷3期
The use of plastics, valued for its affordability, durability, and convenience, has grown significantly with the advancement of industry. Paradoxically, these very properties of plastics have also led to significant environmental challenges. Plastics are highly resistant to decomposition, resulting in their accumulation on land, where they eventually enter aquatic environments, due to natural processes or human activities. Among these plastics, microplastics, which are tiny plastic particles, are particularly concerning when they enter aquatic ecosystems, including rivers and seas. Their small size makes them easily ingestible by aquatic organisms, either by mistake or through natural feeding behaviors, which poses serious risks. Moreover, microplastics readily adsorb other pollutants present in aquatic environments, creating pollutant complexes that can have a synergistic impact, magnifying their harmful effects compared to microplastics or pollutants acting alone. As a result, extensive research has focused on understanding the effects of microplastics on aquatic organisms. Numerous studies have demonstrated that aquatic organisms exposed to microplastics, either alone or in combination with other pollutants, exhibit abnormal hatching, development, and growth. Additionally, many genes, particularly those associated with the antioxidant system, display abnormal expression patterns in these conditions. In this review, we examine these impacts, by discussing specific studies that explore changes in phenotype and gene expression in aquatic organisms exposed to microplastics, both independently and in combination with adsorbed pollutants.
658. In Silico Born Designed Anti-EGFR Aptamer Gol1 Has Anti-Proliferative Potential for Patient Glioblastoma Cells.
作者: Andrey Golovin.;Fatima Dzarieva.;Ksenia Rubetskaya.;Dzhirgala Shamadykova.;Dmitry Usachev.;Galina Pavlova.;Alexey Kopylov.
来源: Int J Mol Sci. 2025年26卷3期
The epidermal growth factor receptor (EGFR) is one of the key oncomarkers in glioblastoma (GB) biomedical research. High levels of EGFR expression and mutations have been found in many GB patients, making the EGFR an attractive target for therapeutic treatment. The EGFRvIII mutant is the most studied, it is not found in normal cells and is positively associated with tumor cell aggressiveness and poor patient prognosis, not to mention there is a possibility of it being a tumor stem cell marker. Some anti-EGFR DNA aptamers have already been selected, including the aptamer U2. The goal of this study was to construct a more stable derivative of the aptamer U2, while not ruining its functional potential toward cell cultures from GB patients. A multiloop motif in a putative secondary structure of the aptamer U2 was taken as a key feature to design a novel minimal aptamer, Gol1, using molecular dynamics simulations for predicted 3D models. It turned out that the aptamer Gol1 has a similar putative secondary structure, with G-C base pairs providing its stability. The anti-proliferative activities of the aptamer Gol1 were assessed using patient-derived GB continuous cell cultures, G01 and BU881, with different abundances of EGFR and EGFRvIII. The transcriptome data for the cell culture G01, after aptamer Gol1 treatment, revealed significant changes in gene expression; it induced the transcription of genes associated with neurogenesis and cell differentiation, and it decreased the transcription of genes mediating key nuclear processes. There were significant changes in the gene transcription of key pro-oncogenic signaling pathways mediated by the EGFR. Therefore, the aptamer Gol1 could potentially be an efficient molecule for translation into biomedicine, in order to develop targeted therapy for GB patients.
659. High-Glucose-Induced Metabolic and Redox Alterations Are Distinctly Modulated by Various Antidiabetic Agents and Interventions Against FABP5/7, MITF and ANGPTL4 in Melanoma A375 Cells.
作者: Nami Nishikiori.;Hiroshi Ohguro.;Megumi Watanabe.;Megumi Higashide.;Toshifumi Ogawa.;Masato Furuhashi.;Tatsuya Sato.
来源: Int J Mol Sci. 2025年26卷3期
Hyperglycemia-induced effects on cellular metabolic properties and reactive oxygen species (ROS) generation play pivotal roles in the pathogenesis of malignant melanoma (MM). This study assessed how metabolic states, ROS production, and related gene expression are modulated by antidiabetic agents. The anti-diabetic agents metformin (Met) and imeglimin (Ime), inhibitors of fatty acid-binding proteins 5/7 (MF6) and microphthalmia-associated transcription factor (MITF) (ML329), and siRNA-mediated knockdown of angiopoietin-like protein 4 (ANGPTL4), which affect mitochondrial respiration, ROS production, and related gene expression, were tested in A375 (MM cell line) cells cultured in low (5.5 mM) and high glucose (50 mM) conditions. Cellular metabolic functions were significantly and differently modulated by Met, Ime, MF6, or ML329 and knockdown of ANGPTL4. High glucose significantly enhanced ROS production, which was alleviated by Ime but not by Met. Both MF6 and ML329 reduced ROS levels under both low and high glucose conditions. Knockdown of ANGPTL4 enhanced the change in glucose-dependent ROS production. Gene expression related to mitochondrial respiration and the pathogenesis of MM was significantly modulated by different glucose conditions, antidiabetic agents, MF6, and ML329. These findings suggest that glucose-dependent changes in cellular metabolism and redox status are differently modulated by antidiabetic agents, inhibition of fatty acid-binding proteins or MITF, and ANGPTL4 knockdown in A375 cells.
660. Fibrinogen Alpha Chain as a Potential Serum Biomarker for Predicting Response to Cisplatin and Gemcitabine Doublet Chemotherapy in Lung Adenocarcinoma: Integrative Transcriptome and Proteome Analyses.
作者: Pritsana Raungrut.;Jirapon Jirapongsak.;Suchanan Tanyapattrapong.;Thitaya Bunsong.;Thidarat Ruklert.;Kannika Kueakool.;Paramee Thongsuksai.;Narongwit Nakwan.
来源: Int J Mol Sci. 2025年26卷3期
Cisplatin combined with gemcitabine, a doublet regimen, is the first-line treatment for patients with advanced lung adenocarcinoma (ADC); however, the treatment response remains poor. This study aimed to identify potential biomarkers for predicting response to cisplatin and gemcitabine. Tissue transcriptome and blood proteome analyses were conducted on 27 patients with lung ADC. Blood-derived proteins that reflected tissue-specific biomarkers were obtained using Venn diagrams. The candidate proteins were validated by Western blotting. Lentivirus-mediated short hairpin RNA interference was used to verify the functional roles of the candidate proteins in human A549 cells. We identified 417 differentially expressed genes, including 52 upregulated and 365 downregulated genes, and 31 differentially expressed proteins, including 26 upregulated and 5 downregulated proteins. Integrative analysis revealed the presence of alpha-1-acid glycoprotein 1 (A1AG1) and fibrinogen alpha chain (FGA or FIBA) in both the tissue and serum. FGA levels were elevated in responders compared to non-responders, and reduced serum FGA levels were correlated with resistance to this regimen. Moreover, FGA knockdown in A549 cells resulted in resistance to the doublet regimen. Our findings indicate that FGA is a tissue-specific serum protein that may function as a blood-based biomarker to predict the response of patients with lung ADC to cisplatin plus gemcitabine chemotherapy.
|