当前位置: 首页 >> 检索结果
共有 139596 条符合本次的查询结果, 用时 2.9565508 秒

2581. Trump proposes unprecedented budget cuts to US science.

作者: Jeff Tollefson.;Dan Garisto.;Max Kozlov.;Alexandra Witze.
来源: Nature. 2025年641卷8063期565-566页

2582. Blood of man who's had 200 snake bites helps make a potent antivenom.

作者: Katherine Bourzac.
来源: Nature. 2025年641卷8063期569-570页

2583. AI scientist 'team' joins the search for extraterrestrial life.

作者: Celeste Biever.
来源: Nature. 2025年641卷8063期568-569页

2584. Trump gutted two landmark environmental reports - can researchers save them?

作者: Alexandra Witze.
来源: Nature. 2025年

2585. Star ecologist 'blurred boundaries' in lab - but colleagues criticize investigation.

作者: Holly Else.
来源: Nature. 2025年

2586. Daily briefing: A supersingular elliptic curve brought to life - the month's best science images.

作者: Jacob Smith.
来源: Nature. 2025年

2587. Powerful protein editors offer new ways of probing living cells.

作者: Asher Mullard.
来源: Nature. 2025年

2588. Searching for dark photons in the Sun's atmosphere.

作者: Katherine Skipper.
来源: Nature. 2025年641卷8062期315页

2589. Walking in two worlds: how an Indigenous computer scientist is using AI to preserve threatened languages.

作者: Amanda Heidt.
来源: Nature. 2025年641卷8062期548-550页

2590. Author Correction: Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning.

作者: Flavio Donato.;Santiago Belluco Rompani.;Pico Caroni.
来源: Nature. 2025年641卷8065期E9页

2591. Whale earwax, fungal fertilizer and chocolate emissions: exhibition explores biodiversity research.

作者: Chris Simms.
来源: Nature. 2025年641卷8062期303-304页

2592. Why the green-technology race might not save the planet.

作者: Edward Barbier.
来源: Nature. 2025年641卷8062期305-308页

2593. Fungus from the human gut slows liver disease in mice.

作者: Rita Aksenfeld.
来源: Nature. 2025年

2594. Exclusive: NSF stops awarding new grants and funding existing ones.

作者: Dan Garisto.
来源: Nature. 2025年

2595. Storm of seizures in a baby's brain calms after trial therapy.

来源: Nature. 2025年641卷8062期285页

2596. Revealed: the unusual mathematics that gives rose petals their shape.

作者: Davide Castelvecchi.
来源: Nature. 2025年641卷8063期570-571页

2597. Daily briefing: 17 ways to ward off stroke, dementia or depression later in life.

作者: Flora Graham.
来源: Nature. 2025年

2598. One of the world's richest lithium deposits began inside a mega-volcano.

来源: Nature. 2025年641卷8062期285页

2599. Adversarial testing of global neuronal workspace and integrated information theories of consciousness.

作者: .;Oscar Ferrante.;Urszula Gorska-Klimowska.;Simon Henin.;Rony Hirschhorn.;Aya Khalaf.;Alex Lepauvre.;Ling Liu.;David Richter.;Yamil Vidal.;Niccolò Bonacchi.;Tanya Brown.;Praveen Sripad.;Marcelo Armendariz.;Katarina Bendtz.;Tara Ghafari.;Dorottya Hetenyi.;Jay Jeschke.;Csaba Kozma.;David R Mazumder.;Stephanie Montenegro.;Alia Seedat.;Abdelrahman Sharafeldin.;Shujun Yang.;Sylvain Baillet.;David J Chalmers.;Radoslaw M Cichy.;Francis Fallon.;Theofanis I Panagiotaropoulos.;Hal Blumenfeld.;Floris P de Lange.;Sasha Devore.;Ole Jensen.;Gabriel Kreiman.;Huan Luo.;Melanie Boly.;Stanislas Dehaene.;Christof Koch.;Giulio Tononi.;Michael Pitts.;Liad Mudrik.;Lucia Melloni.
来源: Nature. 2025年642卷8066期133-142页
Different theories explain how subjective experience arises from brain activity1,2. These theories have independently accrued evidence, but have not been directly compared3. Here we present an open science adversarial collaboration directly juxtaposing integrated information theory (IIT)4,5 and global neuronal workspace theory (GNWT)6-10 via a theory-neutral consortium11-13. The theory proponents and the consortium developed and preregistered the experimental design, divergent predictions, expected outcomes and interpretation thereof12. Human participants (n = 256) viewed suprathreshold stimuli for variable durations while neural activity was measured with functional magnetic resonance imaging, magnetoencephalography and intracranial electroencephalography. We found information about conscious content in visual, ventrotemporal and inferior frontal cortex, with sustained responses in occipital and lateral temporal cortex reflecting stimulus duration, and content-specific synchronization between frontal and early visual areas. These results align with some predictions of IIT and GNWT, while substantially challenging key tenets of both theories. For IIT, a lack of sustained synchronization within the posterior cortex contradicts the claim that network connectivity specifies consciousness. GNWT is challenged by the general lack of ignition at stimulus offset and limited representation of certain conscious dimensions in the prefrontal cortex. These challenges extend to other theories of consciousness that share some of the predictions tested here14-17. Beyond challenging the theories, we present an alternative approach to advance cognitive neuroscience through principled, theory-driven, collaborative research and highlight the need for a quantitative framework for systematic theory testing and building.

2600. A battery-free nanofluidic intracellular delivery patch for internal organs.

作者: Dedong Yin.;Pan Wang.;Yongcun Hao.;Wei Yue.;Xinran Jiang.;Kuanming Yao.;Yuqiong Wang.;Xinxin Hang.;Ao Xiao.;Jingkun Zhou.;Long Lin.;Zhoulyu Rao.;Han Wu.;Feng Liu.;Zaizai Dong.;Meng Wu.;Chenjie Xu.;Jiandong Huang.;Honglong Chang.;Yubo Fan.;Xinge Yu.;Cunjiang Yu.;Lingqian Chang.;Mo Li.
来源: Nature. 2025年642卷8069期1051-1061页
The targeted delivery of therapeutics to internal organs to, for example, promote healing or apoptosis holds promise in the treatment of numerous diseases1-4. Currently, the prevailing delivery modality relies on the circulation; however, this modality has substantial efficiency, safety and/or controllability limitations5-9. Here we report a battery-free, chipless, soft nanofluidic intracellular delivery (NanoFLUID) patch that provides enhanced and customized delivery of payloads in targeted internal organs. The chipless architecture and the flexible nature of thin functional layers facilitate integration with internal organs. The nanopore-microchannel-microelectrode structure enables safe, efficient and precise electroperforation of the cell membrane, which in turn accelerates intracellular payload transport by approximately 105 times compared with conventional diffusion methods while operating under relatively low-amplitude pulses (20 V). Through evaluations of the NanoFLUID patch in multiple in vivo scenarios, including treatment of breast tumours and acute injury in the liver and modelling tumour development, we validated its efficiency, safety and controllability for organ-targeted delivery. NanoFLUID-mediated in vivo transfection of a gene library also enabled efficient screening of essential drivers of breast cancer metastasis in the lung and liver. Through this approach, DUS2 was identified as a lung-specific metastasis driver. Thus, NanoFLUID represents an innovative bioelectronic platform for the targeted delivery of payloads to internal organs to treat various diseases and to uncover new insights in biology.
共有 139596 条符合本次的查询结果, 用时 2.9565508 秒