当前位置: 首页 >> 检索结果
共有 404 条符合本次的查询结果, 用时 1.6170592 秒

201. Plasma phospholipid transfer protein activity is decreased in type 2 diabetes during treatment with atorvastatin: a role for apolipoprotein E?

作者: Geesje M Dallinga-Thie.;Arie van Tol.;Hiroaki Hattori.;Patrick C N Rensen.;Eric J G Sijbrands.
来源: Diabetes. 2006年55卷5期1491-6页
Plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. PLTP activity is elevated in patients with diabetes, a condition with strongly elevated risk for coronary heart disease. The aim of this study was to test the hypothesis that statins reduce PLTP activity and to examine the potential role of apolipoprotein E (apoE). PLTP activity and apoE were measured in patients with type 2 diabetes from the DALI (Diabetes Atorvastatin Lipid Intervention) Study, a 30-week randomized double-blind placebo-controlled trial with atorvastatin (10 and 80 mg daily). At baseline, PLTP activity was positively correlated with waist circumference, HbA(1c), glucose, and apoE (all P < 0.05). Atorvastatin treatment resulted in decreased PLTP activity (10 mg atorvastatin: -8.3%, P < 0.05; 80 mg atorvastatin: -12.1%, P < 0.002). Plasma apoE decreased by 28 and 36%, respectively (P < 0.001). The decrease in apoE was strongly related to the decrease in PLTP activity (r = 0.565, P < 0.001). The change in apoE remained the sole determinant of the change in PLTP activity in a multivariate model. The activity of PLTP in type 2 diabetes is decreased by atorvastatin. The association between the decrease in PLTP activity and apoE during statin treatment supports the hypothesis that apoE may prevent PLTP inactivation.

202. Effect of nutrient ingestion on total-body and splanchnic cortisol production in humans.

作者: Rita Basu.;Ravinder Singh.;Ananda Basu.;C M Johnson.;Robert A Rizza.
来源: Diabetes. 2006年55卷3期667-74页
The splanchnic bed produces cortisol at rates approximating extraadrenal tissues by converting cortisone to cortisol via the 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 pathway. It is not known whether splanchnic cortisol production is regulated by nutrient ingestion and/or by the accompanying changes in hormone secretion. To address this question, 18 healthy humans were randomized to ingest either a mixed meal or to receive an intravenous saline infusion while total-body, splanchnic, and D3 cortisol production (an index of 11beta-HSD type 1 activity) were measured using the combined hepatic catheterization and D4 cortisol infusion methods. Fasting glucose and insulin concentrations did not differ on the meal and saline study days. Glucose and insulin concentrations increased after meal ingestion, peaking at 11.0 +/- 1.0 mmol/l and 451 +/- 64 pmol/l, respectively, at 45 min, then fell to baseline thereafter. In contrast, glucose and insulin concentrations slowly fell to 5.1 +/- 0.1 mmol/l and 27 +/- 6 pmol/l during the 6 h of observation on the saline study day. Fasting cortisol concentration did not differ on the meal and saline study days. Cortisol increased (P < 0.05) to a peak of 353 +/- 55 nmol/l after meal ingestion but did not change after saline infusion. The increase in cortisol after meal ingestion was associated with an increase in both total body cortisol (from 748 +/- 63 to 1,620 +/- 235 nmol/min; P < 0.01) and total body D3 cortisol (from 99 +/- 11 to 143 +/- 11 nmol/min; P < 0.01) production, whereas there was no change in either on the saline study day. The increase in total-body cortisol and D3 cortisol production after meal ingestion originated in extrasplanchnic tissues since splanchnic cortisol production (mean 0-360 min: 254 +/- 83 vs. 262 +/- 36 nmol/min) and splanchnic D3 cortisol production (mean 0-360 min: 72 +/- 22 vs. 77 +/- 14 nmol/min) did not differ on the meal and saline study days. We conclude that ingestion of a mixed meal does not alter either splanchnic cortisol production or the conversion of D4 cortisol to D3 cortisol or, therefore by implication, flux via the splanchnic 11beta-HSD type 1 pathway.

203. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: effects of rosiglitazone treatment.

作者: Raffaele Marfella.;Michele D'Amico.;Katherine Esposito.;Alfonso Baldi.;Clara Di Filippo.;Mario Siniscalchi.;Ferndinando Carlo Sasso.;Michele Portoghese.;Francesca Cirillo.;Federico Cacciapuoti.;Ornella Carbonara.;Basilio Crescenzi.;Feliciano Baldi.;Antonio Ceriello.;Giovanni Francesco Nicoletti.;Francesco D'Andrea.;Mario Verza.;Ludovico Coppola.;Francesco Rossi.;Dario Giugliano.
来源: Diabetes. 2006年55卷3期622-32页
The role of ubiquitin-proteasome system in the accelerated atherosclerotic progression of diabetic patients is unclear. We evaluated ubiquitin-proteasome activity in carotid plaques of asymptomatic diabetic and nondiabetic patients, as well as the effect of rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma activator, in diabetic plaques. Plaques were obtained from 46 type 2 diabetic and 30 nondiabetic patients undergoing carotid endarterectomy. Diabetic patients received 8 mg rosiglitazone (n = 23) or placebo (n = 23) for 4 months before scheduled endarterectomy. Plaques were analyzed for macrophages (CD68), T-cells (CD3), inflammatory cells (HLA-DR), ubiquitin, proteasome 20S activity, nuclear factor (NF)-kappaB, inhibitor of kappaB (IkappaB)-beta, tumor necrosis factor (TNF)-alpha, nitrotyrosine, matrix metalloproteinase (MMP)-9, and collagen content (immunohistochemistry and enzyme-linked immunosorbent assay). Compared with nondiabetic plaques, diabetic plaques had more macrophages, T-cells, and HLA-DR+ cells (P < 0.001); more ubiquitin, proteasome 20S activity (TNF-alpha), and NF-kappaB (P < 0.001); and more markers of oxidative stress (nitrotyrosine and O2(-) production) and MMP-9 (P < 0.01), along with a lesser collagen content and IkappaB-beta levels (P < 0.001). Compared with placebo-treated plaques, rosiglitazone-treated diabetic plaques presented less inflammatory cells (P < 0.01); less ubiquitin, proteasome 20S, TNF-alpha, and NF-kappaB (P < 0.01); less nitrotyrosine and superoxide anion production (P < 0.01); and greater collagen content (P < 0.01), indicating a more stable plaque phenotype. Similar findings were obtained in circulating monocytes obtained from the two groups of diabetic patients and cultured in the presence or absence of rosiglitazone (7.0 micromol/l). Ubiquitin-proteasome over-activity is associated with enhanced inflammatory reaction and NF-kappaB expression in diabetic plaques. The inhibition of ubiquitin-proteasome activity in atherosclerotic lesions of diabetic patients by rosiglitazone is associated with morphological and compositional characteristics of a potential stable plaque phenotype, possibly by downregulating NF-kappaB-mediated inflammatory pathways.

204. Natural antibiotics and insulin sensitivity: the role of bactericidal/permeability-increasing protein.

作者: Carme Gubern.;Abel López-Bermejo.;Josefina Biarnés.;Joan Vendrell.;Wifredo Ricart.;José Manuel Fernández-Real.
来源: Diabetes. 2006年55卷1期216-24页
The innate immune system can immediately respond to microorganism intrusion by helping to prevent further invasion. Bactericidal/permeability-increasing protein (BPI) is a major constituent of neutrophils that possesses anti-inflammatory properties. Inflammation is increasingly recognized as a component of the metabolic syndrome. We hypothesized that the production of BPI could be linked to insulin sensitivity and glucose tolerance. We studied circulating BPI across categories of glucose tolerance. We also studied whether these cross-sectional associations were of functional importance. For this reason, we investigated circulating bioactive lipopolysaccharide and the effects of changing insulin action-after treatment with an insulin sensitizer (metformin)-on circulating BPI in subjects with glucose intolerance. Finally, we tested whether a 3'-untranslated region (UTR) BPI polymorphism led to differences in BPI and insulin action among nondiabetic subjects. Age- and BMI-adjusted circulating BPI was significantly lower among patients with type 2 diabetes. Circulating BPI correlated negatively with fasting and postload glucose and insulin concentrations. In subjects with glucose intolerance, BPI was also linked to BMI, waist-to-hip ratio, and age- and BMI-adjusted insulin sensitivity. Bioactive lipopolysaccharide was negatively correlated with circulating BPI (r = -0.57, P < 0.0001) and positively with plasma lipopolysaccharide-binding protein (r = 0.54, P = 0.002). In parallel to improved insulin sensitivity, plasma BPI significantly increased in the metformin group but not in the placebo group. A 3'-UTR BPI polymorphism was simultaneously associated with plasma BPI concentration, waist-to-hip ratio, fasting and postload insulin concentration, fasting plasma triglycerides, and insulin sensitivity. These findings suggest that this component of the innate immune system is associated with metabolic pathways.

205. Sequence variation in PPARG may underlie differential response to troglitazone.

作者: Johanna K Wolford.;Kimberly A Yeatts.;Sharanjeet K Dhanjal.;Mary Helen Black.;Anny H Xiang.;Thomas A Buchanan.;Richard M Watanabe.
来源: Diabetes. 2005年54卷11期3319-25页
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-gamma (PPARG) agonists used to treat type 2 diabetes. TZDs can also be used to reduce rates of type 2 diabetes in at-risk individuals. However, a large fraction of TZD-treated patients (30-40%) do not respond to TZD treatment with an improvement in insulin sensitivity (Si). We hypothesized that variation within the gene encoding PPARG may underlie this differential response to TZD therapy. We screened approximately 40 kb of PPARG in 93 nondiabetic Hispanic women (63 responders and 30 nonresponders) with previous gestational diabetes who had participated in the Troglitazone In the Prevention Of Diabetes study. TZD nonresponse was defined as the lower tertile in change in Si after 3 months of treatment. Baseline demographic and clinical measures were not different between responders and nonresponders. We identified and genotyped 131 variants including 126 single nucleotide polymorphisms and 5 insertion-deletion polymorphisms. Linkage disequilibrium analysis identified five haplotype blocks. Eight variants were associated with TZD response (P < 0.05). Three variants were also associated with changes in Si as a continuous variable. Our results suggest that PPARG variation may underlie response to TZD therapy in women at risk for type 2 diabetes.

206. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study.

作者: Riikka Lautamäki.;K E Juhani Airaksinen.;Marko Seppänen.;Jyri Toikka.;Matti Luotolahti.;Elizabeth Ball.;Ronald Borra.;Risto Härkönen.;Patricia Iozzo.;Murray Stewart.;Juhani Knuuti.;Pirjo Nuutila.
来源: Diabetes. 2005年54卷9期2787-94页
Rosiglitazone therapy improves insulin sensitivity and glucose uptake in patients with uncomplicated type 2 diabetes. In coronary artery disease (CAD), glucose is an important source of energy and preserved myocardial glucose uptake is essential for the viability of jeopardized myocardium. The aim was to test whether rosiglitazone changes myocardial metabolism in type 2 diabetic patients with CAD. We studied 54 patients (38 men and 16 women) with type 2 diabetes (HbA(1c) 7.2 + 0.9%) and CAD. Myocardial glucose uptake was measured with [(18)F]fluoro-2-deoxy-d-glucose positron emission tomography in ischemic (evaluated by single-photon emission tomography and coronary angiography) and nonischemic regions during euglycemic-hyperinsulinemic clamp before and after a 16-week intervention period with rosiglitazone (n = 27) or placebo (n = 27). Rosiglitazone significantly improved glycemic control (P < 0.0001) and whole-body insulin sensitivity (P < 0.0001). Rosiglitazone increased myocardial glucose uptake from 20.6 +/- 11.8 to 25.5 +/- 12.4 micromol . 100 g(-1) . min(-1) (P = 0.038 vs. baseline, P = 0.023 vs. placebo) in ischemic regions and from 21.7 +/- 12.1 to 28.0 +/- 12.7 micromol . 100 g(-1) . min(-1) (P = 0.014 vs. baseline, P = 0.003 vs. placebo) in nonischemic regions. The increase in myocardial glucose uptake was partly explained by the suppression of free fatty acid levels during clamp. Rosiglitazone therapy significantly increased insulin sensitivity and improved myocardial glucose uptake in type 2 diabetic patients with CAD. These results suggest that rosiglitazone therapy may facilitate myocardial glucose storage and utilization in these patients.

207. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: effects of lifestyle intervention and metformin.

作者: Abbas E Kitabchi.;Marinella Temprosa.;William C Knowler.;Steven E Kahn.;Sarah E Fowler.;Steven M Haffner.;Reuben Andres.;Christopher Saudek.;Sharon L Edelstein.;Richard Arakaki.;Mary Beth Murphy.;Harry Shamoon.; .
来源: Diabetes. 2005年54卷8期2404-14页
Insulin resistance and beta-cell dysfunction, two factors central to the pathogenesis of type 2 diabetes, were studied in relation to the development of diabetes in a group of participants with impaired glucose tolerance in the Diabetes Prevention Program (DPP) at baseline and after specific interventions designed to prevent diabetes. Participants were randomly assigned to placebo (n = 1,082), metformin (850 mg twice a day) (n = 1,073), or intensive lifestyle intervention (n = 1,079). The diabetes hazard rate was negatively associated with baseline insulin sensitivity (hazard rate ratio = 0.62-0.94 per SD difference, depending on treatment group and measure of sensitivity) and with baseline insulin secretion (hazard rate ratio = 0.57-0.76 per SD). Improvements in insulin secretion and insulin sensitivity were associated with lower hazard rates in all treatment arms (hazard rate ratio = 0.46-0.95 per SD increase and 0.29-0.79 per SD increase, respectively). In multivariate models that included the three metabolic variables (changes in body weight, insulin sensitivity, and insulin secretion) each significantly and independently predicted progression to diabetes when adjusted for the other two variables. The intensive lifestyle intervention, which elicited the greatest reduction in diabetes incidence, produced the greatest improvement in insulin sensitivity and the best preservation of beta-cell function after 1 year, whereas the placebo group, which had the highest diabetes incidence, had no significant change in insulin sensitivity and beta-cell function after 1 year. In the metformin group, diabetes risk, insulin sensitivity, and beta-cell function at 1 year were intermediate between those in the intensive lifestyle and placebo groups. In conclusion, higher insulin secretion and sensitivity at baseline and improvements in response to treatment were associated with lower diabetes risk in the DPP. The better preventive effectiveness of intensive lifestyle may be due to improved insulin sensitivity concomitant with preservation of beta-cell function.

208. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial.

作者: Katie Wynne.;Adrian J Park.;Caroline J Small.;Michael Patterson.;Sandra M Ellis.;Kevin G Murphy.;Alison M Wren.;Gary S Frost.;Karim Meeran.;Mohammad A Ghatei.;Stephen R Bloom.
来源: Diabetes. 2005年54卷8期2390-5页
This study investigated the effect of subcutaneously administered oxyntomodulin on body weight in healthy overweight and obese volunteers. Participants self-administered saline or oxyntomodulin subcutaneously in a randomized, double-blind, parallel-group protocol. Injections were self-administered for 4 weeks, three times daily, 30 min before each meal. The volunteers were asked to maintain their regular diet and level of physical exercise during the study period. Subjects' body weight, energy intake, and levels of adipose hormones were assessed at the start and end of the study. Body weight was reduced by 2.3 +/- 0.4 kg in the treatment group over the study period compared with 0.5 +/- 0.5 kg in the control group (P = 0.0106). On average, the treatment group had an additional 0.45-kg weight loss per week. The treatment group demonstrated a reduction in leptin and an increase in adiponectin. Energy intake by the treatment group was significantly reduced by 170 +/- 37 kcal (25 +/- 5%) at the initial study meal (P = 0.0007) and by 250 +/- 63 kcal (35 +/- 9%) at the final study meal (P = 0.0023), with no change in subjective food palatability. Oxyntomodulin treatment resulted in weight loss and a change in the levels of adipose hormones consistent with a loss of adipose tissue. The anorectic effect was maintained over the 4-week period. Oxyntomodulin represents a potential therapy for obesity.

209. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone.

作者: Gina B Di Gregorio.;Aiwei Yao-Borengasser.;Neda Rasouli.;Vijayalakshmi Varma.;Tong Lu.;Leslie M Miles.;Gouri Ranganathan.;Charlotte A Peterson.;Robert E McGehee.;Philip A Kern.
来源: Diabetes. 2005年54卷8期2305-13页
To examine the role of adipose-resident macrophages in insulin resistance, we examined the gene expression of CD68, a macrophage marker, along with macrophage chemoattractant protein-1 (MCP-1) in human subcutaneous adipose tissue using real-time RT-PCR. Both CD68 and MCP-1 mRNAs were expressed in human adipose tissue, primarily in the stromal vascular fraction. When measured in the adipose tissue from subjects with normal glucose tolerance, covering a wide range of BMI (21-51 kg/m2) and insulin sensitivity (S(I)) (0.6-8.0 x 10(-4)min(-1).microU(-1).ml(-1)), CD68 mRNA abundance, which correlated with the number of CD68-positive cells by immunohistochemistry, tended to increase with BMI but was not statistically significant. However, there was a significant inverse relation between CD68 mRNA and S(I) (r=-0.55, P=0.02). In addition, there was a strong positive relationship among adipose tissue CD68 mRNA, tumor necrosis factor-alpha (TNF-alpha) secretion in vitro (r=0.79, P<0.005), and plasma interleukin-6 (r=0.67, P < 0.005). To determine whether improving S(I) in subjects with impaired glucose tolerance (IGT) was associated with decreased CD68 expression, IGT subjects were treated for 10 weeks with pioglitazone or metformin. Pioglitazone increased S(I) by 60% and in the same subjects reduced both CD68 and MCP-1 mRNAs by >50%. Furthermore, pioglitazone resulted in a reduction in the number of CD68-positive cells in adipose tissue and reduced plasma TNF-alpha. Metformin had no effect on any of these measures. Thus, treatment with pioglitazone reduces expression of CD68 and MCP-1 in adipose tissue, apparently by reducing macrophage numbers, resulting in reduced inflammatory cytokine production and improvement in S(I).

210. Evidence of an association between the Arg72 allele of the peptide YY and increased risk of type 2 diabetes.

作者: Signe S Torekov.;Lesli H Larsen.;Charlotte Glümer.;Knut Borch-Johnsen.;Torben Jørgensen.;Jens J Holst.;Ole D Madsen.;Torben Hansen.;Oluf Pedersen.
来源: Diabetes. 2005年54卷7期2261-5页
We tested the hypothesis that variants in the gene encoding the prepropeptide YY (PYY) associate with type 2 diabetes and/or obesity. Mutation analyses of DNA from 84 patients with obesity and familial type 2 diabetes identified two polymorphisms, IVS3 + 68C>T and Arg72Thr, and one rare variant, +151C>A of PYY. The common allele of the Arg72Thr variant associated with type 2 diabetes with an allele frequency of the Arg allele of 0.667 (95% CI 0.658-0.677) among 4,639 glucose-tolerant subjects and 0.692 (0.674-0.710) among 1,326 patients with type 2 diabetes (P = 0.005, odds ratio 1.19 [95% CI 1.05-1.35]). The same polymorphism associated with overweight (25 < or = BMI < 30 kg/m2) (P = 0.018, 1.15 [1.02-1.28]). In quantitative trait analyses of a population-based sample of 6,022 subjects, the Arg allele was associated with an increased plasma glucose level 2 h after an oral glucose tolerance test (OGTT) (P = 0.03), an increased area under the curve for the post-OGTT plasma glucose level (P = 0.03), and a lower insulinogenic index (P = 0.01). In conclusion, the common Arg allele of the PYY Arg72Thr variant modestly associates with type 2 diabetes and with type 2 diabetes-related quantitative traits.

211. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients.

作者: Frank Pistrosch.;Kay Herbrig.;Beate Kindel.;Jens Passauer.;Sabine Fischer.;Peter Gross.
来源: Diabetes. 2005年54卷7期2206-11页
Microalbuminuria, an early feature of diabetic nephropathy, indicates intrarenal endothelial damage. In type 2 diabetes, microalbuminuria is strongly related to insulin resistance. We therefore investigated whether rosiglitazone, an insulin-sensitizing drug that is known to improve endothelial dysfunction, was able to improve intrarenal endothelial dysfunction and microalbuminuria. Nineteen type 2 diabetic patients participated in this double-blind cross-over trial. Nine patients with newly diagnosed disease without microalbuminuria were randomized to a treatment with rosiglitazone or nateglinide, each for 12 weeks. Ten patients with microalbuminuria were randomized to rosiglitazone or placebo, each for 12 weeks in addition to their previous antidiabetic medication. After each treatment, glomerular filtration rate (GFR), renal plasma flow, and filtration fraction were measured before and after blockade of nitric oxide (NO) by intravenous administration of N-monomethyl-L-arginine-acetate (L-NMMA). Ten healthy subjects served as control subjects. Type 2 diabetic patients at baseline showed glomerular hyperfiltration compared with healthy control subjects. Rosiglitazone reduced elevated GFR and filtration fraction toward control primarily in patients with microalbuminuria (GFR: 133.4 +/- 9.8 vs. 119.6 +/- 8.7 ml/min; filtration fraction: 23.2 +/- 1.7 vs. 20.5 +/- 1.6% before and after rosiglitazone, respectively; control subjects: GFR 111.7 +/- 8.6 ml/min, filtration fraction 20.4 +/- 1.5%). Rosiglitazone improved intrarenal NO bioavailability in type 2 diabetes toward control as shown by infusion of L-NMMA. Rosiglitazone reduced albumin excretion in type 2 diabetes with microalbuminuria from 116.5 +/- 31 to 40.4 +/- 12 mg/day. Rosiglitazone ameliorated glomerular hyperfiltration in early type 2 diabetes, improved NO bioavailability, and lessened renal end-organ damage in type 2 diabetes with microalbuminuria.

212. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein Kinase C beta Inhibitor Diabetic Retinopathy Study (PKC-DRS) multicenter randomized clinical trial.

作者: .
来源: Diabetes. 2005年54卷7期2188-97页
The purpose of this study was to evaluate the Safety and efficacy of the orally administered protein kinase C (PKC) beta isoform-selective inhibitor ruboxistaurin (RBX) in subjects with moderately severe to very severe nonproliferative diabetic retinopathy (NPDR). In this multicenter, double-masked, randomized, placebo-controlled study, 252 subjects received placebo or RBX (8, 16, or 32 mg/day) for 36-46 months. Patients had an Early Treatment Diabetic Retinopathy Study (ETDRS) retinopathy severity level between 47B and 53E inclusive, an ETDRS visual acuity of 20/125 or better, and no history of scatter (panretinal) photocoagulation. Efficacy measures included progression of DR, moderate visual loss (MVL) (doubling of the visual angle), and sustained MVL (SMVL). RBX was well tolerated without significant adverse effects but had no significant effect on the progression of DR. Compared with placebo, 32 mg/day RBX was associated with a delayed occurrence of MVL (log rank, P = 0.038) and of SMVL (P = 0.226). RBX reduction of SMVL was evident only in eyes with definite diabetic macular edema at baseline (10% 32 mg/day RBX vs. 25% placebo, P = 0.017). In multivariable Cox proportional hazard analysis, 32 mg/day RBX significantly reduced the risk of MVL compared with placebo (hazard ratio 0.37 [95% CI 0.17-0.80], P = 0.012). In this clinical trial, RBX was well tolerated and reduced the risk of visual loss but did not prevent DR progression.

213. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes.

作者: Kevan C Herold.;Stephen E Gitelman.;Umesh Masharani.;William Hagopian.;Brygida Bisikirska.;David Donaldson.;Kristina Rother.;Beverly Diamond.;David M Harlan.;Jeffrey A Bluestone.
来源: Diabetes. 2005年54卷6期1763-9页
Despite advances in understanding autoimmune diabetes in animal models, there has been little progress in altering the natural course of the human disease, which involves progression to insulin deficiency. Studies with immunosuppressive agents have shown short-term effectiveness, but they have not induced tolerance, and continuous treatment is needed. We studied the effects of hOKT3gamma1(Ala-Ala), a humanized Fc mutated anti-CD3 monoclonal antibody, on the progression of type 1 diabetes in patients with recent-onset disease in a randomized controlled trial. In general, the drug was well tolerated. A single course of treatment, within the first 6 weeks after diagnosis, preserved C-peptide responses to a mixed meal for 1 year after diagnosis (97 +/- 9.6% of response at study entry in drug-treated patients vs. 53 +/- 7.6% in control subjects, P < 0.01), with significant improvement in C-peptide responses to a mixed meal even 2 years after treatment (P < 0.02). The improved C-peptide responses were accompanied by reduced HbA(1c) and insulin requirements. Clinical responses to drug treatment were predicted by an increase in the relative number of CD8(+) T-cells in the peripheral blood after the lymphocyte count recovered 2 weeks after the last dose of drug. We conclude that treatment with the anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improved C-peptide responses and clinical parameters in type 1 diabetes for at least 2 years in the absence of continued immunosuppressive medications.

214. Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: a randomized controlled study.

作者: Håkan K R Karlsson.;Kirsti Hällsten.;Marie Björnholm.;Hiroki Tsuchida.;Alexander V Chibalin.;Kirsi A Virtanen.;Olli J Heinonen.;Fredrik Lönnqvist.;Pirjo Nuutila.;Juleen R Zierath.
来源: Diabetes. 2005年54卷5期1459-67页
The effect of metformin or rosiglitazone monotherapy versus placebo on insulin signaling and gene expression in skeletal muscle of patients with newly diagnosed type 2 diabetes was determined. A euglycemic-hyperinsulinemic clamp, combined with skeletal muscle biopsies and glucose uptake measurements over rested and exercised muscle, was performed before and after 26 weeks of metformin (n = 9), rosiglitazone (n = 10), or placebo (n = 11) treatment. Insulin-mediated whole-body and leg muscle glucose uptake was enhanced 36 and 32%, respectively, after rosiglitazone (P < 0.01) but not after metformin or placebo treatment. Insulin increased insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation, IRS-1-associated phosphatidylinositol (PI) 3-kinase activity, and phosphorylation of Akt Ser473 and AS160, a newly described Akt substrate that plays a role in GLUT4 exocytosis, approximately 2.3 fold before treatment. These insulin signaling parameters were unaltered after metformin, rosiglitazone, or placebo treatment. Expression of selected genes involved in glucose and fatty acid metabolism in skeletal muscle was unchanged between the treatment groups. Low-intensity acute exercise increased insulin-mediated glucose uptake but was without effect on insulin signaling. In conclusion, the insulin-sensitizing effects of rosiglitazone are independent of enhanced signaling of IRS-1/PI 3-kinase/Akt/AS160 in patients with newly diagnosed type 2 diabetes.

215. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo.

作者: Iwona Bogacka.;Hui Xie.;George A Bray.;Steven R Smith.
来源: Diabetes. 2005年54卷5期1392-9页
Thiazolidenediones such as pioglitazone improve insulin sensitivity in diabetic patients by several mechanisms, including increased uptake and metabolism of free fatty acids in adipose tissue. The purpose of the present study was to determine the effect of pioglitazone on mitochondrial biogenesis and expression of genes involved in fatty acid oxidation in subcutaneous fat. Patients with type 2 diabetes were randomly divided into two groups and treated with placebo or pioglitazone (45 mg/day) for 12 weeks. Mitochondrial DNA copy number and expression of genes involved in mitochondrial biogenesis were quantified by real-time PCR. Pioglitazone treatment significantly increased mitochondrial copy number and expression of factors involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1alpha and mitochondrial transcription factor A. Treatment with pioglitazone stimulated the expression of genes in the fatty acid oxidation pathway, including carnitine palmitoyltransferase-1, malonyl-CoA decarboxylase, and medium-chain acyl-CoA dehydrogenase. The expression of PPAR-alpha, a transcriptional regulator of genes encoding mitochondrial enzymes involved in fatty acid oxidation, was higher after pioglitazone treatment. Finally, the increased mitochondrial copy number and the higher expression of genes involved in fatty acid oxidation in human adipocytes may contribute to the hypolipidemic effects of pioglitazone.

216. Rosiglitazone increases indexes of stearoyl-CoA desaturase activity in humans: link to insulin sensitization and the role of dominant-negative mutation in peroxisome proliferator-activated receptor-gamma.

作者: Ulf Risérus.;Garry D Tan.;Barbara A Fielding.;Matt J Neville.;Jenny Currie.;David B Savage.;V Krishna Chatterjee.;Keith N Frayn.;Stephen O'Rahilly.;Fredrik Karpe.
来源: Diabetes. 2005年54卷5期1379-84页
Fatty acid desaturases such as steaoryl-CoA desaturase (SCD) convert saturated to unsaturated fatty acids and are involved in lipogenesis. Observational and animal data suggest that SCD-1 activity is related to insulin sensitivity. However, the effects of insulin-sensitizing drugs on SCD gene expression and desaturase activities are unknown in humans. In a randomized, placebo-controlled, double-blind, crossover study, 24 subjects with type 2 diabetes and one subject with partial lipodystrophy and diabetes due to dominant-negative mutation in the peroxisome proliferator-activated receptor-gamma (PPARgamma) gene (P467L) received placebo and rosiglitazone for 3 months. SCD gene expression in adipose tissue was determined in 23 subjects, and in a representative subgroup (n = 10) we assessed fatty acid composition in fasting plasma triglycerides to estimate SCD and delta6- and delta5-desaturase activity, using product-to-precursor indexes. SCD mRNA expression increased by 48% after rosiglitazone (P < 0.01). SCD and delta5-desaturase but not delta6-desaturase activity indexes were increased after rosiglitazone versus placebo (P < 0.01 and P < 0.05, respectively). The change in activity index but not the expression of SCD was associated with improved insulin sensitivity (r = 0.73, P < 0.05). In the P467L PPARgamma carrier, SCD and delta5-desaturase activity indexes were exceptionally low but were restored (52- and 15-fold increases, respectively) after rosiglitazone treatment. This study shows for the first time that rosiglitazone increases SCD activity indexes and gene expression in humans. An increased SCD activity index may reflect increased lipogenesis and might contribute to insulin sensitization by rosiglitazone. The restored SCD activity index after rosiglitazone in PPARgamma mutation supports a pivotal role of PPARgamma function in SCD regulation.

217. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program.

作者: William C Knowler.;Richard F Hamman.;Sharon L Edelstein.;Elizabeth Barrett-Connor.;David A Ehrmann.;Elizabeth A Walker.;Sarah E Fowler.;David M Nathan.;Steven E Kahn.; .
来源: Diabetes. 2005年54卷4期1150-6页
The Diabetes Prevention Program (DPP) was a randomized clinical trial of prevention of type 2 diabetes in high-risk people. Troglitazone, an insulin-sensitizing agent, was used initially but was discontinued during the trial. Troglitazone therapy was compared with other DPP interventions, considering both the short-term "in-trial" results and the longer-term results after troglitazone were discontinued. From 1996 to 1998, participants were randomly assigned to treatment with metformin (n = 587), troglitazone (n = 585), double placebo (n = 582), or intensive lifestyle intervention (ILS) (n = 589). Because of concern regarding its liver toxicity, the troglitazone arm was discontinued in June 1998, after which follow-up of all participants continued. During the mean 0.9 year (range 0.5-1.5 years) of troglitazone treatment, the diabetes incidence rate was 3.0 cases/100 person-years, compared with 12.0, 6.7, and 5.1 cases/100 person-years in the placebo, metformin, and ILS participants (P < 0.001, troglitazone vs. placebo; P = 0.02, troglitazone vs. metformin; P = 0.18, troglitazone vs. ILS). This effect of troglitazone was in part due to improved insulin sensitivity with maintenance of insulin secretion. During the 3 years after troglitazone withdrawal, the diabetes incidence rate was almost identical to that of the placebo group. Troglitazone, therefore, markedly reduced the incidence of diabetes during its limited period of use, but this action did not persist. Whether other thiazolidinedione drugs used for longer periods can safely prevent diabetes remains to be determined.

218. The role of amylin and glucagon in the dampening of glycemic excursions in children with type 1 diabetes.

作者: Rubina A Heptulla.;Luisa M Rodriguez.;Lisa Bomgaars.;Morey W Haymond.
来源: Diabetes. 2005年54卷4期1100-7页
Postprandial hyperglycemia and preprandial hypoglycemia contribute to poor glycemic control in type 1 diabetes. We hypothesized that postprandial glycemic excursions could be normalized in type 1 diabetes by suppressing glucagon with pramlintide acetate in the immediate postprandial period and supplementing glucagon in the late postprandial period. A total of 11 control subjects were compared with 8 type 1 diabetic subjects on insulin pump therapy, using the usual insulin bolus-to-carbohydrate ratio during a standard liquid meal. Type 1 diabetic subjects were then randomized to two open-labeled studies. On one occasion, type 1 diabetic subjects received a 60% increase in the insulin bolus-to-carbohydrate ratio with minidose glucagon rescue injections, and on the other occasion type 1 diabetic subjects received 30-45 microg pramlintide with their usual insulin bolus-to-carbohydrate ratio. Glucose, glucagon, amylin (pramlintide), and insulin concentrations were measured for 420 min. The plasma glucose area under the curve (AUC) for 0-420 min was lower in control versus type 1 diabetic subjects (316 +/- 5 vs. 929 +/- 18 mg x h(-1) x dl(-1), P < 0.0001). Pramlintide, but not an increase in insulin, reduced immediate postprandial hyperglycemia (AUC(0-180 min) 470 +/- 43 vs. 434 +/- 48 mg x h(-1) x dl(-1), P < 0.01). Pramlintide administration suppressed glucagon (P < 0.02), and glucagon injections prevented late hypoglycemia with increased insulin. In summary, in type 1 diabetes, glucagon modulation with pramlintide as an adjunct to insulin therapy may prove beneficial in controlling postmeal glycemic swings.

219. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone.

作者: Thekkepat C Sandeep.;Ruth Andrew.;Natalie Z M Homer.;Robert C Andrews.;Ken Smith.;Brian R Walker.
来源: Diabetes. 2005年54卷3期872-9页
11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) regenerates cortisol from cortisone within adipose tissue and liver. 11HSD1 inhibitors may enhance insulin sensitivity in type 2 diabetes and be most efficacious in obesity when 11HSD1 is increased in subcutaneous adipose biopsies. We examined the regeneration of cortisol in vivo in obesity, and the effects of the 11HSD1 inhibitor carbenoxolone. We compared six lean and six obese men and performed a randomized, placebo-controlled crossover study of carbenoxolone in obese men. The obese men had no difference in their whole-body rate of regenerating cortisol (measured with 9,11,12,12-[(2)H(4)]cortisol tracer), but had more rapid conversion of [(3)H]cortisone to [(3)H]cortisol in abdominal subcutaneous adipose tissue (measured with microdialysis). During insulin infusion, adipose 11HSD1 activity fell markedly in lean but not in obese men. Carbenoxolone inhibited whole-body cortisol regeneration, but did not significantly inhibit adipose 11HSD1 and had no effects on insulin sensitivity (measured by [(2)H(2)]glucose infusion with or without hyperinsulinemia). Thus, in vivo cortisol generation is increased selectively within adipose tissue in obesity, perhaps reflecting resistance to insulin-mediated downregulation of 11HSD1. However, obese men are less susceptible than lean men to the insulin-sensitizing effects of carbenoxolone. To be useful in obese patients, 11HSD1 inhibitors will need to inhibit the enzyme more effectively in adipose tissue.

220. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women.

作者: Ketan Dhatariya.;Maureen L Bigelow.;K Sreekumaran Nair.
来源: Diabetes. 2005年54卷3期765-9页
DHEA (dehydroepiandrosterone) replacement is not part of the current standard of care in hypoadrenal subjects. Animal studies have shown that DHEA administration prevents diabetes. To determine the physiological effect of DHEA replacement on insulin sensitivity in adrenal-deficient women, we performed a single-center, randomized, double-blind, placebo-controlled, crossover study in 28 hypoadrenal women (mean age 50.2 +/- 2.87 years) who received a single 50-mg dose of DHEA daily or placebo. After 12 weeks, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. DHEA replacement significantly increased DHEA-S (sulfated ester of DHEA), bioavailable testosterone, and androstenedione and reduced sex hormone-binding globulin levels. Fasting plasma insulin and glucagon were lower with DHEA (42 +/- 4.94 vs. 53 +/- 6.58 pmol/l [P = 0.005] and 178 +/- 11.32 vs. 195.04 +/- 15 pmol/l [P = 0.02], respectively). The average amount of glucose needed to maintain similar blood glucose levels while infusing the same insulin dosages was higher during DHEA administration (358 +/- 24.7 vs. 320 +/- 24.6 mg/min; P < 0.05), whereas endogenous glucose production was similar. DHEA also reduced total cholesterol (P < 0.005), triglycerides (P < 0.011), LDL cholesterol (P < 0.05), and HDL cholesterol (P < 0.005). In conclusion, replacement therapy with 50 mg of DHEA for 12 weeks significantly increased insulin sensitivity in hypoadrenal women, thereby suggesting that DHEA replacement could have a potential impact in preventing type 2 diabetes.
共有 404 条符合本次的查询结果, 用时 1.6170592 秒