当前位置: 首页 >> 检索结果
共有 138986 条符合本次的查询结果, 用时 1.4674745 秒

181. A way to determine how partial charges of atoms in a molecule are distributed.

来源: Nature. 2025年

182. Ancient DNA clarifies the early history of the Slavs.

作者: Steffen Patzold.
来源: Nature. 2025年

183. Ant queens produce sons of two distinct species.

作者: Jessica Purcell.
来源: Nature. 2025年

184. Cas9 senses CRISPR RNA abundance to regulate CRISPR spacer acquisition.

作者: Xufei Zhou.;Rucheng Diao.;Xin Li.;Christine A Ziegler.;Max J Gramelspacher.;Lydia Freddolino.;Zhonggang Hou.;Yan Zhang.
来源: Nature. 2025年
Prokaryotes create adaptive immune memories by acquiring foreign DNA snippets, known as spacers, into the CRISPR array1. In type II CRISPR-Cas systems, the RNA-guided effector Cas9 also assists the acquisition machinery by selecting spacers from protospacer adjacent motif (PAM)-flanked DNA2,3. Here, we uncover the first biological role for Cas9 that is independent of its dual RNA partners. Following depletion of crRNA and/or tracrRNA, Neisseria apoCas9 stimulates spacer acquisition efficiency. Physiologically, Cas9 senses low levels of crRNA in cells with short CRISPR arrays - such as those undergoing array neogenesis or natural array contractions - and dynamically upregulates acquisition to quickly expand the small immune memory banks. As the CRISPR array expands, rising crRNA abundance in turn reduces apoCas9 availability, thereby dampening acquisition to mitigate autoimmunity risks associate with elevated acquisition. While apoCas9's nuclease lobe alone suffices for stimulating acquisition, only full-length Cas9 responses to crRNA levels to boost acquisition in cells with low immunity depth. Finally, we show that this activity is evolutionarily conserved across multiple type II-C Cas9 orthologs. Altogether, we establish an auto-replenishing feedback mechanism in which apoCas9 safeguards CRISPR immunity depth by acting as both a crRNA sensor and a regulator of spacer acquisition.

185. Liquid-crystal specs refocus with the push of a button.

来源: Nature. 2025年645卷8080期287页

186. Daily briefing: Spouses tend to share the same psychiatric disorders.

作者: Flora Graham.
来源: Nature. 2025年

187. A mammoth toothache: bacterial community discovered in mouth of ancient mammal.

作者: Katie Kavanagh.
来源: Nature. 2025年645卷8080期293-294页

188. AI-powered brain device allows paralysed man to control robotic arm.

作者: Rachel Fieldhouse.
来源: Nature. 2025年

189. These 'glass straw' optical fibres could speed up the Internet.

作者: Davide Castelvecchi.
来源: Nature. 2025年

190. Sexless seeds: how self-cloning crops could soon transform our food.

作者: Dyani Lewis.
来源: Nature. 2025年645卷8079期26-28页

191. Experiment puts 'spoon bending' to the test.

来源: Nature. 2025年645卷8079期51页

192. AI-agent ethics should consider sentient non-human animals.

作者: Borbala Foris.;Jean-Loup Rault.
来源: Nature. 2025年645卷8079期41页

193. Include climate impacts when protecting infrastructure.

作者: Hongfang Lu.;Y Frank Cheng.
来源: Nature. 2025年645卷8079期41页

194. Veterinarians need to be part of West Nile disease storytelling.

作者: Giovanni Di Guardo.
来源: Nature. 2025年645卷8079期41页

195. China's chikungunya virus outbreak is a wake up call.

作者: Yulin Zhang.;Yi Zhang.;Zezheng Fang.;Shilei Ni.
来源: Nature. 2025年645卷8079期41页

196. Unifying gravity and quantum theory requires better understanding of time.

作者: Fay Dowker.
来源: Nature. 2025年645卷8079期32-34页

197. Air taxis will soon be in our skies - if batteries can be made safer.

作者: Liqiang Mai.;Xiaocong Tian.;Yunlong Zhao.
来源: Nature. 2025年645卷8079期36-38页

198. 'The wolf is not the bad guy': working with farmers to protect a reintroduced species.

作者: Rachael Pells.
来源: Nature. 2025年645卷8079期276页

199. Do social-media bans benefit young people? These data could offer clues.

作者: Helen Christensen.;Andrew Mackinnon.
来源: Nature. 2025年645卷8079期38-40页

200. Clarity or accuracy - what makes a good scientific image?

作者: Felice Frankel.
来源: Nature. 2025年645卷8079期30-31页
共有 138986 条符合本次的查询结果, 用时 1.4674745 秒