181. The streetlight effect in type 1 diabetes.
In the nearly 100 years since the discovery of therapeutic insulin, significant research efforts have been directed at finding the underlying cause of type 1 diabetes (T1D) and developing a "cure" for the disease. While progress has clearly been made toward each of these goals, neither vision has been fulfilled. With increasing pressure from both public and private funders of diabetes research, growing impatience of those with T1D at the lack of practical discoveries, increased competition for research funds, uncertainties on the reproducibility of published scientific data, and questions regarding the value of animal models, the current research environment has become extraordinarily difficult to traverse from the perspective of investigators. As a result, there is an increasing pressure toward performance of what might be considered "safe" research, where the aim is to affirm existing dogmas rather than to pioneer efforts involving unconventional thought. Psychologists refer to this practice as "observational bias" while cartoonists label the process the "streetlight effect." In this Perspective, we consider notions in T1D research that should be subject to bold question and provide additional concepts, many somewhat orphan to research efforts, whose investigation could lead to a means for truly identifying the cause of and a cure for T1D.
182. Determinants of shortened, disrupted, and mistimed sleep and associated metabolic health consequences in healthy humans.
Recent increases in the prevalence of obesity and type 2 diabetes mellitus (T2DM) in modern societies have been paralleled by reductions in the time their denizens spend asleep. Epidemiological studies have shown that disturbed sleep-comprising short, low-quality, and mistimed sleep-increases the risk of metabolic diseases, especially obesity and T2DM. Supporting a causal role of disturbed sleep, experimental animal and human studies have found that sleep loss can impair metabolic control and body weight regulation. Possible mechanisms for the observed changes comprise sleep loss-induced changes in appetite-signaling hormones (e.g., higher levels of the hunger-promoting hormone ghrelin) or hedonic brain responses, altered responses of peripheral tissues to metabolic signals, and changes in energy intake and expenditure. Even though the overall consensus is that sleep loss leads to metabolic perturbations promoting the development of obesity and T2DM, experimental evidence supporting the validity of this view has been inconsistent. This Perspective aims at discussing molecular to behavioral factors through which short, low-quality, and mistimed sleep may threaten metabolic public health. In this context, possible factors that may determine the extent to which poor sleep patterns increase the risk of metabolic pathologies within and across generations will be discussed (e.g., timing and genetics).
183. Metabolomics and diabetes: analytical and computational approaches.
作者: Kelli M Sas.;Alla Karnovsky.;George Michailidis.;Subramaniam Pennathur.
来源: Diabetes. 2015年64卷3期718-32页
Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field.
184. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes.
作者: Christopher J Nolan.;Neil B Ruderman.;Steven E Kahn.;Oluf Pedersen.;Marc Prentki.
来源: Diabetes. 2015年64卷3期673-86页
Stratifying the management of type 2 diabetes (T2D) has to take into account marked variability in patient phenotype due to heterogeneity in its pathophysiology, different stages of the disease process, and multiple other patient factors including comorbidities. The focus here is on the very challenging subgroup of patients with T2D who are overweight or obese with insulin resistance (IR) and the most refractory hyperglycemia due to an inability to change lifestyle to reverse positive energy balance. For this subgroup of patients with T2D, we question the dogma that IR is primarily harmful to the body and should be counteracted at any cost. Instead we propose that IR, particularly in this high-risk subgroup, is a defense mechanism that protects critical tissues of the cardiovascular system from nutrient-induced injury. Overriding IR in an effort to lower plasma glucose levels, particularly with intensive insulin therapy, could therefore be harmful. Treatments that nutrient off-load to lower glucose are more likely to be beneficial. The concepts of "IR as an adaptive defense mechanism" and "insulin-induced metabolic stress" may provide explanation for some of the unexpected outcomes of recent major clinical trials in T2D. Potential molecular mechanisms underlying these concepts; their clinical implications for stratification of T2D management, particularly in overweight and obese patients with difficult glycemic control; and future research requirements are discussed.
185. Mitochondrial hormesis and diabetic complications.
The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications--mitochondrial hormesis--is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing.
186. Insulin regulates brain function, but how does it get there?
We have learned over the last several decades that the brain is an important target for insulin action. Insulin in the central nervous system (CNS) affects feeding behavior and body energy stores, the metabolism of glucose and fats in the liver and adipose, and various aspects of memory and cognition. Insulin may even influence the development or progression of Alzheimer disease. Yet, a number of seemingly simple questions (e.g., What is the pathway for delivery of insulin to the brain? Is insulin's delivery to the brain mediated by the insulin receptor and is it a regulated process? Is brain insulin delivery affected by insulin resistance?) are unanswered. Here we briefly review accumulated findings affirming the importance of insulin as a CNS regulatory peptide, examine the current understanding of how peripheral insulin is delivered to the brain, and identify key gaps in the current understanding of this process.
187. Immune cell crosstalk in obesity: a key role for costimulation?
作者: Tom Seijkens.;Pascal Kusters.;Antonios Chatzigeorgiou.;Triantafyllos Chavakis.;Esther Lutgens.
来源: Diabetes. 2014年63卷12期3982-91页
In the past two decades, numerous experimental and clinical studies have established the importance of inflammation and immunity in the development of obesity and its metabolic complications, including insulin resistance and type 2 diabetes mellitus. In this context, T cells orchestrate inflammatory processes in metabolic organs, such as the adipose tissue (AT) and liver, thereby mediating obesity-related metabolic deterioration. Costimulatory molecules, which are present on antigen-presenting cells and naïve T cells in the AT, are known to mediate the crosstalk between the adaptive and innate immune system and to direct T-cell responses in inflammation. In this Perspectives in Diabetes article, we highlight the newest insights in immune cell interactions in obesity and discuss the role of costimulatory dyads in its pathogenesis. Moreover, the potential of therapeutic strategies that target costimulatory molecules in the metabolic syndrome is explored.
188. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome.
作者: I-Chen Yu.;Hung-Yun Lin.;Janet D Sparks.;Shuyuan Yeh.;Chawnshang Chang.
来源: Diabetes. 2014年63卷10期3180-8页
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies in men. Androgen-deprivation therapy (ADT) is the first-line treatment and fundamental management for men with advanced PCa to suppress functions of androgen/androgen receptor (AR) signaling. ADT is effective at improving cancer symptoms and prolonging survival. However, epidemiological and clinical studies support the notion that testosterone deficiency in men leads to the development of metabolic syndrome that increases cardiovascular disease risk. The underlying mechanisms by which androgen/AR signaling regulates metabolic homeostasis in men are complex, and in this review, we discuss molecular mechanisms mediated by AR signaling that link ADT to metabolic syndrome. Results derived from various AR knockout mouse models reveal tissue-specific AR signaling that is involved in regulation of metabolism. These data suggest that steps be taken early to manage metabolic complications associated with PCa patients receiving ADT, which could be accomplished using tissue-selective modulation of AR signaling and by treatment with insulin-sensitizing agents.
189. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease.
A growing body of clinical and epidemiological research suggests that two of the most common diseases of aging, type 2 diabetes (T2DM) and Alzheimer disease (AD), are linked. The nature of the association is not known, but this observation has led to the notion that drugs developed for the treatment of T2DM may be beneficial in modifying the pathophysiology of AD and maintaining cognitive function. Recent advances in the understanding of the biology of T2DM have resulted in a growing number of therapies that are approved or in clinical development for this disease. This review summarizes the evidence that T2DM and AD are linked, with a focus on the cellular and molecular mechanisms in common, and then assesses the various clinical-stage diabetes drugs for their potential activity in AD. At a time when existing therapies for AD offer only limited symptomatic benefit for some patients, additional clinical trials of diabetes drugs are needed to at least advance the care of T2DM patients at risk for or with comorbid AD and also to determine their value for AD in general.
190. Insulin action in brain regulates systemic metabolism and brain function.
作者: André Kleinridders.;Heather A Ferris.;Weikang Cai.;C Ronald Kahn.
来源: Diabetes. 2014年63卷7期2232-43页
Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.
191. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease.
A growing body of evidence supports an intriguing clinical/epidemiological connection between Alzheimer disease (AD) and type 2 diabetes (T2D). T2D patients have significantly increased risk of developing AD and vice versa. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and metabolic disorders, notably obesity and T2D. In T2D and obesity, low-grade chronic inflammation is a key mechanism leading to peripheral insulin resistance, which progressively causes tissue deterioration and overall health decline. In the brain, proinflammatory signaling was recently found to mediate impaired neuronal insulin signaling, synapse deterioration, and memory loss. Here, we review evidence indicating that inflammation, insulin resistance, and mitochondrial dysfunction are common features in AD and T2D. We further propose the hypothesis that dementia and its underlying neuronal dysfunction are exacerbated or driven by peripheral inflammation. Identification of central and peripheral inflammation as potential mediators of brain dysfunction in AD may lead to the development of effective treatments for this devastating disease.
192. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI?
Diabetes is associated with cognitive dysfunction and an increased risk of dementia. This article addresses findings with brain MRI that may underlie cognitive dysfunction in diabetes. Studies in adults with type 1 diabetes show regional reductions in brain volume. In those with a diabetes onset in childhood, these volume reductions are likely to reflect the sum of changes that occur during brain development and changes that occur later in life due to exposure to diabetes-related factors. Type 2 diabetes is associated with global brain atrophy and an increased burden of small-vessel disease. These brain changes occur in the context of aging and often also in relation to an adverse vascular risk factor profile. Advanced imaging techniques detect microstructural lesions in the cerebral gray and white matter of patients with diabetes that affect structural and functional connectivity. Challenges are to further unravel the etiology of these cerebral complications by integrating findings from different imaging modalities and detailed clinical phenotyping and by linking structural MRI abnormalities to histology. A better understanding of the underlying mechanisms is necessary to establish interventions that will improve long-term cognitive outcomes for patients with type 1 and type 2 diabetes.
193. Cell replacement strategies aimed at reconstitution of the β-cell compartment in type 1 diabetes.
作者: Giuseppe Orlando.;Pierre Gianello.;Marcus Salvatori.;Robert J Stratta.;Shay Soker.;Camillo Ricordi.;Juan Domínguez-Bendala.
来源: Diabetes. 2014年63卷5期1433-44页
Emerging technologies in regenerative medicine have the potential to restore the β-cell compartment in diabetic patients, thereby overcoming the inadequacies of current treatment strategies and organ supply. Novel approaches include: 1) Encapsulation technology that protects islet transplants from host immune surveillance; 2) stem cell therapies and cellular reprogramming, which seek to regenerate the depleted β-cell compartment; and 3) whole-organ bioengineering, which capitalizes on the innate properties of the pancreas extracellular matrix to drive cellular repopulation. Collaborative efforts across these subfields of regenerative medicine seek to ultimately produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes.
194. The oral minimal model method.
作者: Claudio Cobelli.;Chiara Dalla Man.;Gianna Toffolo.;Rita Basu.;Adrian Vella.;Robert Rizza.
来源: Diabetes. 2014年63卷4期1203-13页
The simultaneous assessment of insulin action, secretion, and hepatic extraction is key to understanding postprandial glucose metabolism in nondiabetic and diabetic humans. We review the oral minimal method (i.e., models that allow the estimation of insulin sensitivity, β-cell responsivity, and hepatic insulin extraction from a mixed-meal or an oral glucose tolerance test). Both of these oral tests are more physiologic and simpler to administer than those based on an intravenous test (e.g., a glucose clamp or an intravenous glucose tolerance test). The focus of this review is on indices provided by physiological-based models and their validation against the glucose clamp technique. We discuss first the oral minimal model method rationale, data, and protocols. Then we present the three minimal models and the indices they provide. The disposition index paradigm, a widely used β-cell function metric, is revisited in the context of individual versus population modeling. Adding a glucose tracer to the oral dose significantly enhances the assessment of insulin action by segregating insulin sensitivity into its glucose disposal and hepatic components. The oral minimal model method, by quantitatively portraying the complex relationships between the major players of glucose metabolism, is able to provide novel insights regarding the regulation of postprandial metabolism.
195. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map.
作者: Ernesto Bernal-Mizrachi.;Rohit N Kulkarni.;Donald K Scott.;Franck Mauvais-Jarvis.;Andrew F Stewart.;Adolfo Garcia-Ocaña.
来源: Diabetes. 2014年63卷3期819-31页
Enhancing β-cell proliferation is a major goal for type 1 and type 2 diabetes research. Unraveling the network of β-cell intracellular signaling pathways that promote β-cell replication can provide the tools to address this important task. In a previous Perspectives in Diabetes article, we discussed what was known regarding several important intracellular signaling pathways in rodent β-cells, including the insulin receptor substrate/phosphatidylinositol-3 kinase/Akt (IRS-PI3K-Akt) pathways, glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR) S6 kinase pathways, protein kinase Cζ (PKCζ) pathways, and their downstream cell-cycle molecular targets, and contrasted that ample knowledge to the small amount of complementary data on human β-cell intracellular signaling pathways. In this Perspectives, we summarize additional important information on signaling pathways activated by nutrients, such as glucose; growth factors, such as epidermal growth factor, platelet-derived growth factor, and Wnt; and hormones, such as leptin, estrogen, and progesterone, that are linked to rodent and human β-cell proliferation. With these two Perspectives, we attempt to construct a brief summary of knowledge for β-cell researchers on mitogenic signaling pathways and to emphasize how little is known regarding intracellular events linked to human β-cell replication. This is a critical aspect in the long-term goal of expanding human β-cells for the prevention and/or cure of type 1 and type 2 diabetes.
198. Death and dysfunction of transplanted β-cells: lessons learned from type 2 diabetes?
作者: Kathryn J Potter.;Clara Y Westwell-Roper.;Agnieszka M Klimek-Abercrombie.;Garth L Warnock.;C Bruce Verchere.
来源: Diabetes. 2014年63卷1期12-9页
β-Cell replacement by islet transplantation is a potential curative therapy for type 1 diabetes. Despite advancements in islet procurement and immune suppression that have increased islet transplant survival, graft function progressively declines, and many recipients return to insulin dependence within a few years posttransplant. The progressive loss of β-cell function in islet transplants seems unlikely to be explained by allo- and autoimmune-mediated mechanisms alone and in a number of ways resembles β-cell failure in type 2 diabetes. That is, both following transplantation and in type 2 diabetes, islets exhibit decreased first-phase glucose-stimulated insulin secretion, impaired proinsulin processing, inflammation, formation of islet amyloid, signs of oxidative and endoplasmic reticulum stress, and β-cell death. These similarities suggest common mechanisms may underlie loss of insulin production in both type 2 diabetes and islet transplantation and point to the potential for therapeutic approaches used in type 2 diabetes that target the β-cell, such as incretin-based therapies, as adjuncts for immunosuppression in islet transplantation.
199. The β-cell/EC axis: how do islet cells talk to each other?
作者: Heshan Peiris.;Claudine S Bonder.;P Toby H Coates.;Damien J Keating.;Claire F Jessup.
来源: Diabetes. 2014年63卷1期3-11页
Within the pancreatic islet, the β-cell represents the ultimate biosensor. Its central function is to accurately sense glucose levels in the blood and consequently release appropriate amounts of insulin. As the only cell type capable of insulin production, the β-cell must balance this crucial workload with self-preservation and, when required, regeneration. Evidence suggests that the β-cell has an important ally in intraislet endothelial cells (ECs). As well as providing a conduit for delivery of the primary input stimulus (glucose) and dissemination of its most important effector (insulin), intraislet blood vessels deliver oxygen to these dense clusters of metabolically active cells. Furthermore, it appears that ECs directly impact insulin gene expression and secretion and β-cell survival. This review discusses the molecules and pathways involved in the crosstalk between β-cells and intraislet ECs. The evidence supporting the intraislet EC as an important partner for β-cell function is examined to highlight the relevance of this axis in the context of type 1 and type 2 diabetes. Recent work that has established the potential of ECs or their progenitors to enhance the re-establishment of glycemic control following pancreatic islet transplantation in animal models is discussed.
200. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
作者: Antigone S Dimas.;Vasiliki Lagou.;Adam Barker.;Joshua W Knowles.;Reedik Mägi.;Marie-France Hivert.;Andrea Benazzo.;Denis Rybin.;Anne U Jackson.;Heather M Stringham.;Ci Song.;Antje Fischer-Rosinsky.;Trine Welløv Boesgaard.;Niels Grarup.;Fahim A Abbasi.;Themistocles L Assimes.;Ke Hao.;Xia Yang.;Cécile Lecoeur.;Inês Barroso.;Lori L Bonnycastle.;Yvonne Böttcher.;Suzannah Bumpstead.;Peter S Chines.;Michael R Erdos.;Jurgen Graessler.;Peter Kovacs.;Mario A Morken.;Narisu Narisu.;Felicity Payne.;Alena Stancakova.;Amy J Swift.;Anke Tönjes.;Stefan R Bornstein.;Stéphane Cauchi.;Philippe Froguel.;David Meyre.;Peter E H Schwarz.;Hans-Ulrich Häring.;Ulf Smith.;Michael Boehnke.;Richard N Bergman.;Francis S Collins.;Karen L Mohlke.;Jaakko Tuomilehto.;Thomas Quertemous.;Lars Lind.;Torben Hansen.;Oluf Pedersen.;Mark Walker.;Andreas F H Pfeiffer.;Joachim Spranger.;Michael Stumvoll.;James B Meigs.;Nicholas J Wareham.;Johanna Kuusisto.;Markku Laakso.;Claudia Langenberg.;Josée Dupuis.;Richard M Watanabe.;Jose C Florez.;Erik Ingelsson.;Mark I McCarthy.;Inga Prokopenko.; .
来源: Diabetes. 2014年63卷6期2158-71页
Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
|