当前位置: 首页 >> 检索结果
共有 338735 条符合本次的查询结果, 用时 2.2211266 秒

761. Overexpression of TMOD1 is associated with enhanced regional lymph node metastasis in human oral cancer.

作者: Toshikazu Suzuki.;Atsushi Kasamatsu.;Isao Miyamoto.;Tomoaki Saito.;Morihiro Higo.;Yosuke Endo-Sakamoto.;Masashi Shiiba.;Hideki Tanzawa.;Katsuhiro Uzawa.
来源: Int J Oncol. 2016年48卷2期607-12页
Tropomodulin1 (TMOD1), which regulates the length and depolymerization of actin filaments by binding to the pointed end of the actin filament, has been reported to be a powerful diagnostic marker for ALK-negative anaplastic large-cell lymphoma; however, little is known about the relevance of TMOD1 in the behavior of oral squamous cell carcinoma (OSCC). We evaluated TMOD1 expression in OSCC-derived cell lines and primary OSCC samples (n=200) using quantitative reverse transcriptase-polymerase chain reaction, immunoblotting and semi-quantitative immunohistochemistry. We also analyzed the clinical correlation between TMOD1 expression status and clinical parameters in patients with OSCC and performed a prospective study using 40 primary OSCC samples. TMOD1 expression was upregulated significantly (p<0.05) in OSCC in vitro and in vivo compared with normal counterparts. TMOD1 expression also was correlated significantly (p=0.0199 and p=0.0064, respectively) with regional lymph node metastasis (RLNM) and 5-year survival rates. This prospective study also showed that high TMOD1 expression was seen in 12 (75%) of 16 cases in RLNM-positive patients and 9 (37.5%) of 24 cases in RLNM-negative patients. The current data provide the first evidence that TMOD1 expression is a critical biomarker for RLNM and prognosis of patients with OSCC.

762. Genetic network profiles associated with established resistance to ionizing radiation in acute promyelocytic leukemia cells and their extracellular vesicles.

作者: Satoru Monzen.;Mitsuru Chiba.;Yoichiro Hosokawa.
来源: Oncol Rep. 2016年35卷2期749-56页
Radiation-resistant acute promyelocytic leukemia (APL) cells present challenges to treatment, and the acquisition of resistance to ionizing radiation (IR) is a matter of clinical concern. However, little information is available on the behavior of radio-resistant APL in terms of gene expression profiles and intercellular communication. In this study, cDNA microarray and RT-PCR were used to analyze the intracellular genetic network and extracellular vesicles (EVs), respectively, in the established radio-resistant HL60 (Res-HL60) cell line. Significant changes in the expression of 7,309 known mRNAs were observed in Res-HL60 relative to control. In addition, 7 mRNAs were determined as targets because significant changes in the expression were observed using Ingenuity analysis software, confirming the quantitative RT-PCR. However, EVs from Res-HL60 cells did not include these target molecules. These results suggest that radio-resistant APL is regulated by the expression and suppression of specific molecules, and these molecules are not transferred between cells by EVs.

763. Analysis of somatic mutations in BRAF, CDKN2A/p16 and PI3KCA in patients with medullary thyroid carcinoma.

作者: Fabrício P Nascimento.;Mirian G Cardoso.;Susan C Lindsey.;Ilda S Kunii.;Flávia O F Valente.;Marina M L Kizys.;Rosana Delcelo.;Cléber P Camacho.;Rui M B Maciel.;Magnus R Dias-Da-Silva.
来源: Mol Med Rep. 2016年13卷2期1653-60页
Medullary thyroid carcinoma (MTC), a neuroendocrine tumor originating from thyroid parafollicular cells, has been demonstrated to be associated with mutations in RET, HRAS, KRAS and NRAS. However, the role of other genes involved in the oncogenesis of neural crest tumors remains to be fully investigated in MTC. The current study aimed to investigate the presence of somatic mutations in BRAF, CDKN2A and PI3KCA in MTC, and to investigate the correlation with disease progression. DNA was isolated from paraffin‑embedded tumors and blood samples from patients with MTC, and the hotspot somatic mutations were sequenced. A total of 2 novel HRAS mutations, p.Asp33Asn and p.His94Tyr, and polymorphisms within the 3' untranslated region (UTR) of CDKN2A (rs11515 and rs3088440) were identified, however, no mutations were observed in other genes. It was suggested that somatic point mutations in BRAF, CDKN2A and PI3KCA do not participate in the oncogenesis of MTC. Further studies are required in order to clarify the contribution of the polymorphisms identified in the 3'UTR of CDKN2A in MTC.

764. Expression of prion protein is closely associated with pathological and clinical progression and abnormalities of p53 in head and neck squamous cell carcinomas.

作者: Wei Wei.;Qi Shi.;Nai-Song Zhang.;Kang Xiao.;Li-Na Chen.;Xiao-Dong Yang.;Jia-Fu Ji.;Xiao-Ping Dong.
来源: Oncol Rep. 2016年35卷2期817-24页
Prion protein (PrP) is a glycosyl-phosphatidylinositol (GPI)-anchored membrane protein that functions as a unique pathogenic agent in transmissible spongiform encephalopathy (TSE). In the past decade, overexpression of PrP was observed in a number of human malignant tumors, such as gastric, breast and pancreatic cancer. However, the role of PrP expression in squamous cell carcinoma is rarely documented. To screen PrP expression in head and neck squamous cell carcinoma (HNSCCs), the paraffin-embedded specimens of 92 pathologically diagnosed HNSCCs were assessed by PrP-specific immunohistochemistry (IHC). A total of 55.43% (51/92) of the tested carcinoma tissues were PrP-positive. The rate of positivity and the staining intensity of PrP were closely related with the pathological degree of the HNSCCs; a higher rate of PrP expression was noted in the group of poorly differentiated cancers. PrP-positivity rates increased along with the progression of the clinical grade of the carcinomas. Further evaluation of the associations between PrP expression and the data concerning p53 abnormalities and human papillomavirus (HPV) infection in these samples as previously described, revealed that PrP-positive staining was more frequently detected in the tissues with p53-positive accumulation and the wild-type TP53 gene. The patients with a proline (Pro) polymorphism in SNP72 of TP53 showed significantly higher PrP-positive rates than those with arginine (Arg). No notable difference in PrP expression was identified between the HPV-positive and HPV-negative group. These data indicate a close association of PrP expression with clinical and histological differentiation of HNSCCs, as well as abnormalities of p53.

765. Frequent BRAF or EGFR Mutations in Ciliated Muconodular Papillary Tumors of the Lung.

作者: Tsugumasa Kamata.;Kuniko Sunami.;Akihiko Yoshida.;Kouya Shiraishi.;Koh Furuta.;Yoko Shimada.;Hitoshi Katai.;Shun-Ichi Watanabe.;Hisao Asamura.;Takashi Kohno.;Koji Tsuta.
来源: J Thorac Oncol. 2016年11卷2期261-5页
Ciliated muconodular papillary tumors (CMPTs) are recently characterized, rare peripheral nodules of the lung. These small tumors are histologically comprised of a vaguely organized mixture of nonatypical ciliated columnar cells, mucous cells, and basal cells, and consistently follow a benign clinical course. However, the histogenesis of CMPTs remains uncertain.

766. Cell adhesion downregulates the expression of Homer1b/c and contributes to drug resistance in multiple myeloma cells.

作者: Jie Tang.;Hongxuan Zhou.;Chun Wang.;Xiaodong Fei.;Liqun Zhu.;Yuejiao Huang.;Yunhua He.;Jing Liu.;Xiaobing Miao.;Yaxun Wu.;Yuchan Wang.
来源: Oncol Rep. 2016年35卷3期1875-83页
Previous studies have demonstrated that Homer1b/c plays an important pro-apoptotic role through classical mitochondrial apoptotic pathway. The present study was undertaken to determine the expression and functional significance of Homer1b/c in multiple myeloma (MM). We found that Homer1b/c was lowly expressed in MM cell apoptotic model induced by doxorubicin. The positive role of Homer1b/c in cell apoptosis was further confirmed by knocking down Homer1b/c. Further study confirmed that Homer1b/c was able to affect the CAM-DR via pro-apoptotic activity regulating the ability of cell adhesion. Collectively, these data indicate that Homer1b/c may represent a good candidate for pursuing clinical trial in MM.

767. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-κB and upregulation of microRNA-29b.

作者: Jie Xie.;Jianchao Wang.;Bo Zhu.
来源: Mol Med Rep. 2016年13卷2期1627-32页
Multiple myeloma (MM) is a malignant tumor and is the most common primary tumor of the bone marrow in the USA. Genistein is predominantly found in Leguminosae and various lines of evidence have indicated that it suppresses cell growth, induces programmed cell death and inhibits angiogenesis. As a result of these capabilities, genistein presents as a promising cancer chemopreventive agent. However, the effect of genistein on MM remains to be elucidated. The present study investigated the effect of genistein on the proliferation and apoptosis of MM cells through the regulation of nuclear factor-κB (NF-κB) and microRNA-29b (miR-29b). In the present study, cell proliferation was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, apoptosis was detected using an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay and caspase-3 activation assay. The expression of NF-κB and miR-29b was analyzed using western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Finally, miR-29b and anti-miR-29b plasmids were transfected into U266 cells to determine the effect of genistein on MM. In the present study, the results demonstrated that genistein could significantly reduce cell proliferation, induce apoptosis and increase the activity of caspase-3 in U266 cells. Furthermore, it was found that genistein could suppress the protein level of NF-κB and promote the expression of miR-29b in U266 cells. The results also indicated that miR-29b could alter the expression of NF-κB in U266 cells. These findings suggest that genistein inhibits the proliferation of human MM cells by upregulating miR-29b resulting in suppression of NF-κB.

768. Hypoxia inducible factor-1 mediates upregulation of urokinase-type plasminogen activator receptor gene transcription during hypoxia in cervical cancer cells.

作者: Hirotaka Nishi.;Toru Sasaki.;Yuzo Nagamitsu.;Fumitoshi Terauchi.;Takeshi Nagai.;Toshitaka Nagao.;Keiichi Isaka.
来源: Oncol Rep. 2016年35卷2期992-8页
Hypoxia occurs during development of cervical cancer and is considered to correlate with its invasion. Hypoxia mediates tumor cells to have more invasive property in a variety of cancers. Urokinase plasminogen activator receptor (uPAR) which mediates invasion is considered to be induced by hypoxia. We sought to determine the regulators of uPAR expression during hypoxia in cervical cancer. We showed that cervical cancer cell lines, CaSki and CA, were more invasive under hypoxic condition (1% O2) than under normoxic condition (20% O2) by invasion assays. Using western blot analysis, hypoxia enhanced the endogenous hypoxia-inducible factor (HIF)-1α and uPAR protein expression. uPAR mRNA level was also upregulated by hypoxia using real-time RT-PCR. Overexpression of HIF-1α which is induced by hypoxia activated the transcriptional activity of the uPAR promoter by luciferase assays. HIF-1 protein bound the putative HIF-1 response element on the uPAR promoter using electrophoretic mobility shift analysis, and additional luciferase assays show that this is essential for uPAR transactivation by HIF-1. HIF-1 overexpression enhanced the endogenous uPAR expression and introduction of siRNA for HIF-1α diminishes uPAR expression during hypoxia. These results indicate the upregulation of uPAR by hypoxia in cervical cancer cells is mediated through HIF-1. In cervical cancer tissues, we also demonstrated that uPAR protein expression was detected in cervical cancer but not in normal cervix or cervical intraepithelial neoplasia (CIN) by immunohistopathological staining. Our results provide evidence that regulation of uPAR expression by HIF-1 represents a mechanism for cervical cancer invasion during hypoxia.

769. Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells.

作者: Fatima H Mohammed.;Maitham A Khajah.;Ming Yang.;William J Brackenbury.;Yunus A Luqmani.
来源: Int J Oncol. 2016年48卷1期73-83页
Voltage-gated Na+ channels (VGSCs) are membrane proteins which are normally expressed in excitable cells but have also been detected in cancer cells, where they are thought to be involved in malignancy progression. In this study we examined the ion current and expression profile of VGSC (Nav1.5) in estrogen receptor (ER)-positive (MCF-7) and silenced (pII) breast cancer cells and its possible influence on their proliferation, motility and invasion. VGSC currents were analysed by whole cell patch clamp recording. Nav1.5 expression and localization, in response to EGF stimulation, was examined by western blotting and immunofluorescence respectively. Cell invasion (under-agarose and Matrigel assays), motility (wound healing assay) and proliferation (MTT assay) were assessed in pII cells in response to VGSC blockers, phenytoin (PHT) and tetrodotoxin (TTX), or by siRNA knockdown of Nav1.5. The effect of PHT and TTX on modulating EGF-induced phosphorylation of Akt and ERK1/2 was determined by western blotting. Total matrix metalloproteinase (MMP) was determined using a fluorometric-based activity assay. The level of various human proteases was detected by using proteome profiler array kit. VGSC currents were detected in pII cells, but were absent in MCF-7. Nav1.5 showed cytoplasmic and perinuclear expression in both MCF-7 and pII cells, with enhanced expression upon EGF stimulation. Treatment of pII cells with PHT, TTX or siRNA significantly reduced invasion towards serum components and EGF, in part through reduction of P-ERK1/2 and proteases such as cathepsin E, kallikrein-10 and MMP-7, as well as total MMP activity. At high concentrations, PHT inhibited motility while TTX reduced cell proliferation. Pharmacological or genetic blockade of Nav1.5 may serve as a potential anti-metastatic therapy for breast cancer.

770. Activation of Toll-like receptor 7 regulates the expression of IFN-λ1, p53, PTEN, VEGF, TIMP-1 and MMP-9 in pancreatic cancer cells.

作者: Fang Wang.;Rui Jin.;Bing-Bing Zou.;Lei Li.;Feng-Wei Cheng.;Xin Luo.;Xiaoping Geng.;Sheng-Quan Zhang.
来源: Mol Med Rep. 2016年13卷2期1807-12页
Toll-like receptors (TLRs) are critical in the induction of the immune response in tumor development. TLR7 has previously been demonstrated to be associated with the development of pancreatic cancer, and the release of cytokines and chemokines from other types of cancer cell; however, the specific expression induced by TLR7 agonists in pancreatic cancer cells remains to be elucidated. The present study aimed to investigate the effects of the TLR7 agonist, gardiquimod, on ERK1/2 signaling pathway, and on the expression of genes involved in the pathogenesis of cancer, including phosphatase and tensin homolog deleted on chromosome 10 (PTEN), p53, type Ⅲ interferon (IFN-λ1), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). The results demonstrated that activation of TLR7 upregulated the expression levels of certain genes to varying degrees; the expression levels of IFN-λ1 and MMP-9 were increased by ~3 fold, whereas other genes (p53, PTEN, TIMP-1) were upregulated by ~2 fold, and VEGF was marginally upregulated after 10 min. Furthermore, gardiquimod increased the expression levels of phosphorylated-extracellular signal-regulated kinase (ERK)1/2. In addition, PD98059, a specific inhibitor of ERK phosphorylation, inhibited the ability of gardiquimod to activate ERK1/2; consequently weakening the effect of gardiquimod on gene regulation. These findings indicated that the effect of TLR7 agonists, including gardiquimod, on gene expression in BxPC-3 pancreatic cancer cells was partly associated with the mitogen-activated protein kinase-ERK1/2 signaling pathway.

771. Genetic characterization of early onset ovarian carcinoma.

作者: Sarah S Bernards.;Barbara M Norquist.;Maria I Harrell.;Kathy J Agnew.;Ming K Lee.;Tom Walsh.;Elizabeth M Swisher.
来源: Gynecol Oncol. 2016年140卷2期221-5页
Ovarian carcinoma (OC) is rare in young women and the fraction of early onset OC attributable to inherited mutations in known OC genes is uncertain. We sought to characterize the fraction of OC that is heritable in women diagnosed with ovarian, fallopian tube, or peritoneal carcinoma at forty years of age or younger.

772. Targeting survivin using a combination of miR‑494 and survivin shRNA has synergistic effects on the suppression of prostate cancer growth.

作者: Jin Zhu.;Chenwen Sun.;Liping Wang.;Ming Xu.;Yachen Zang.;Yibin Zhou.;Xiaolong Liu.;Wei Tao.;Boxin Xue.;Yuxi Shan.;Dongrong Yang.
来源: Mol Med Rep. 2016年13卷2期1602-10页
Castration-resistant prostate cancer (CRPC) remains an obstacle in the current treatment provided for prostate cancer (PCa). Survivin, an apoptosis inhibitor, has been found to be involved in the progression of PCa, and is a promising candidate target for CRPC therapy. Micro (mi)RNAs are involved in the progression of PCa through the regulation of multiple genes. One of the objectives of the present study was to investigate the effect of miRNA (miR)‑494 on the expression of survivin, as well as on PCa growth. The present study also aimed to assess whether co-transfecting miR‑494 with survivin short hairpin (sh)RNA has synergistic effects on suppressing PCa proliferation or the expression of survivin. Gene Expression Omnibus datasets with clinical PCa miRNA expression profiles were utilized to analysis the expression of miR‑494 in Ca, compared with normal prostate samples. PC3 cells, a CRPC cell line, were transfected with either an miR‑494 expression adenovirus, a survivin shRNA adenovirus or the two together, to examine their effect on PCa growth and the expression of survivin in vitro and in vivo. miR‑494 was downregulated in PCa tissue samples and in the PC‑3 cell line. miR‑494 targeted survivin at the translational level in PCa. Overexpression of miR‑494 and silencing survivin RNA through the use of survivin shRNA inhibited the expression of survivin and attenuated PC‑3 cell growth in vitro and in vivo. Notably, co‑transfecting miR‑494 with survivin shRNA had synergistic effects on suppressing prostate cancer proliferation via further suppression of the expression of survivin. These results suggested that using multiple methods to inhibit the function of survivin may have improved efficacy for treating PCa.

773. Differential expression profiles of long non-coding RNAs reveal potential biomarkers for identification of human gastric cancer.

作者: Chengyun Li.;Geyu Liang.;Wenzhuo Yao.;Jing Sui.;Xian Shen.;Yanqiu Zhang.;Shumei Ma.;Yancheng Ye.;Zhiyi Zhang.;Wenhua Zhang.;Lihong Yin.;Yuepu Pu.
来源: Oncol Rep. 2016年35卷3期1529-40页
Gastric cancer (GC) is one of the most lethal malignancies worldwide. To reduce its high mortality, sensitive and specific biomarkers for early detection are urgently needed. Recent studies have reported that tumor-specific long non-coding RNAs (lncRNAs) seem to be potential biomarkers for the early diagnosis and treatment of cancer. In the present study, lncRNA and mRNA expression profiling of GC specimens and their paired adjacent non-cancerous tissues was performed. Differentially expressed lncRNAs and mRNAs were identified through microarray analysis. The function of differential mRNA was determined by gene ontology and pathway analysis and the functions of lncRNAs were studied by constructing a co-expression network to find the relationships with corresponding mRNAs. We connected the co-expression network, mRNA functions, and the results of the microarray profile differential expression and selected 14 significantly differentially expressed key lncRNAs and 21 key mRNAs. Quantitative RT-PCR (qRT-PCR) was conducted to verify these key RNAs in 50 newly diagnosed GC patients. The data showed that RP5-919F19, CTD-2541M15 and UCA1 was significantly higher expressed. AP000459, LOC101928316, RP11-167N4 and LINC01071 expression was significantly lower in 30 advanced GC tumor tissues than adjacent non-tumor tissues P<0.05. Then, we further validated the above significant differential expression candidate lncRNAs in 20 early stage GC patients. Results showed that CTD-2541M15 and UCA1 were significantly higher expressed, AP000459, LINC01071 and MEG3 expression was significantly lower in 20 early stage GC patient tumor tissues than adjacent non-tumor tissues (P<0.05). In addition, expression of these lncRNAs shows gradual upward trend from early stage GC to advanced GC. Furthermore, conditional logistic regression analysis revealed the aberrant expression of CTD-2541M15, UCA1 and MEG3 closely linked with GC. There is a set of differentially expressed lncRNAs in GC which may be associated with the progression and development of GC. The differential expression profiles of lncRNAs in GC may be promising biomarkers for the early detection and early screening of high‑risk populations.

774. Macrolides sensitize EGFR-TKI-induced non-apoptotic cell death via blocking autophagy flux in pancreatic cancer cell lines.

作者: Shuntaro Mukai.;Shota Moriya.;Masaki Hiramoto.;Hiromi Kazama.;Hiroko Kokuba.;Xiao-Fang Che.;Tomohisa Yokoyama.;Satoshi Sakamoto.;Akihiro Sugawara.;Toshiaki Sunazuka.;Satoshi Ōmura.;Hiroshi Handa.;Takao Itoi.;Keisuke Miyazawa.
来源: Int J Oncol. 2016年48卷1期45-54页
Pancreatic cancer is one of the most difficult types of cancer to treat because of its high mortality rate due to chemotherapy resistance. We previously reported that combined treatment with gefitinib (GEF) and clarithromycin (CAM) results in enhanced cytotoxicity of GEF along with endoplasmic reticulum (ER) stress loading in non-small cell lung cancer cell lines. An epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) such as GEF induces autophagy in a pro-survival role, whereas CAM inhibits autophagy flux in various cell lines. Pronounced GEF-induced cytotoxicity therefore appears to depend on the efficacy of autophagy inhibition. In the present study, we compared the effect on autophagy inhibition among such macrolides as CAM, azithromycin (AZM), and EM900, a novel 12-membered non-antibiotic macrolide. We then assessed the enhanced GEF-induced cytotoxic effect on pancreatic cancer cell lines BxPC-3 and PANC-1. Autophagy flux analysis indicated that AZM is the most effective autophagy inhibitor of the three macrolides. CAM exhibits an inhibitory effect but less than AZM and EM900. Notably, the enhancing effect of GEF-induced cytotoxicity by combining macrolides correlated well with their efficient autophagy inhibition. However, this pronounced cytotoxicity was not due to upregulation of apoptosis induction, but was at least partially mediated through necroptosis. Our data suggest the possibility of using macrolides as 'chemosensitizers' for EGFR-TKI therapy in pancreatic cancer patients to enhance non-apoptotic tumor cell death induction.

775. Aberrant GRK6 promoter methylation is associated with poor prognosis in hypopharyngeal squamous cell carcinoma.

作者: Xiaoxia Qiu.;Jianqiu Chen.;Zhenxin Zhang.;Yiwen You.;Zhiwei Wang.
来源: Oncol Rep. 2016年35卷2期1027-33页
Hypopharyngeal squamous cell carcinoma (HSCC) is one of the most common head and neck cancers with high invasiveness and poor prognosis. To identify targeted therapeutics against metastasis, a better understanding of the regulation of HSCC cell invasion is needed. In recent years, G protein-coupled receptor kinases (GRKs) have been implicated in cancer metastasis through phosphorylation of the activated form of G protein coupled receptors (GPCRs). However, there is little information regarding GRKs expression in HSCC. In the present study, we examined GRK6 expression in HSCC and also assessed the possible cause of its aberrant expression, as well as its clinical significance. Real-time quantitative PCR (qPCR) and western blotting were performed to analyze the expression of GRK6 in HSCC tissues and corresponding non-malignant tissues. Subsequently, paired HSCC and corresponding non-malignant tissues were evaluated for the methylation status of GRK6 gene promoter using methylation-specific PCR (MSP). Furthermore, we investigated the methylation status and the clinicopathological significance of GRK6 in 45 paired HSCC and corresponding non-malignant tissues. The suppression of GRK6 in hypopharyngeal cell line FaDu by GRK6-shRNA lentivirus transfection was utilized to detect the role of GRK6 in hypopharyngeal cancer progression. Our results showed that the expression of GRK6 mRNA and protein was significantly lower in HSCC than in corresponding adjacent non-tumor tissues, and this downregulation was found to be in accordance with aberrant methylation of the gene. Hypermethylation of the gene was observed in 77.8% (35/45) of the HSCC tissues, while it was found in only 42.2% (19/45) of the corresponding non-malignant tissues. GRK6 methylation was related to depth of tumor invasion and TNM stage. Upon treatment with 5-aza-2'-deoxycytidine, GRK6 expression was upregulated in FaDu cells, and cell invasion was signinficantly inhibited. Furthermore, the suppression of GRK6 by shRNA transfection enhanced FaDu cells invasion. Our results indicate that the aberrant methylation of GRK6 gene promoter may underlie its downregulation in HSCC, and may play an important role in the metastasis of HSCC.

776. Molecular Mechanisms Underlying Pituitary Pathogenesis.

作者: Melanie Sapochnik.;Leandro Eduardo Nieto.;Mariana Fuertes.;Eduardo Arzt.
来源: Biochem Genet. 2016年54卷2期107-19页
During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors.

777. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB.

作者: Zhuliang Shi.;Zhiqiang Hu.;Delu Chen.;Jie Huang.;Jie Fan.;Subo Zhou.;Xin Wang.;Jiandao Hu.;Fei Huang.
来源: Mol Med Rep. 2016年13卷2期1732-8页
In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.

778. Redox cycling of a copper complex with benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone contributes to its enhanced antitumor activity, but no change in the mechanism of action occurs after chelation.

作者: Yinli Yang.;Cuiping Li.;Yun Fu.;Youxun Liu.;Yu Zhang.;Yanfang Zhang.;Pingxin Zhou.;Yanbin Yuan.;Sufeng Zhou.;Shaoshan Li.;Changzheng Li.
来源: Oncol Rep. 2016年35卷3期1636-44页
Many anticancer drugs used in the clinical have potent metal chelating ability. The formed metal complex(es) may exhibit improved (or antagonistic) antitumor activity. However, the underlying mechanism has received limited attention. Therefore, investigation of the mechanism involved in the change upon chelation is required to extend our understanding of the effects of various drugs. In the present study, the proliferation inhibition effect of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone (BNMPH) and its copper complex on tumor cell lines was investigated. The copper chelate exhibited almost a 10-fold increase in antitumor activity (with IC50 <5 µM). The results showed that both BNMPH and its copper complex induced reactive oxygen species (ROS) generation, and caused upregulation of caspase 8 and Bax as well as the downregulation of Bcl-2, indicating that apoptosis was involved in the cytotoxic effects. DNA fragmentation noted in the comet assay further supported ROS involvement. The present study indicated that BNMPH and its copper complex effectively induced S phase arrest and the cell cycle arrest was associated with the downregulation of cyclin D1. The formation of acidic vesicular organelles (AVOs) and an increase in cleaved LC3-II demonstrated that autophagy occurred in the HepG2 cells treated with the agents. Taken together, BNMPH and its copper complex exhibited proliferation inhibition via apoptosis, cell cycle arrest and autophagy, which was dependent on ROS. The enhanced antitumor activity of the copper complex was due to its redox-cycling ability, but the mechanism was not altered compared to BNMPH. Our findings may significantly contribute to the understanding of the anti-proliferative effect of BNMPH and its copper complex.

779. MicroRNA-340 inhibits prostate cancer cell proliferation and metastasis by targeting the MDM2-p53 pathway.

作者: Kai Huang.;Yuxin Tang.;Leye He.;Yingbo Dai.
来源: Oncol Rep. 2016年35卷2期887-95页
An increasing number of studies have demonstrated the important role of microRNAs (miRNAs) in modulating cancer progression and metastasis, but the mechanisms by which miRNAs regulate prostate cancer (PCa) tumorigenesis remain poorly understood. In the present study, we found that miR-340 may act as a tumor suppressor based on our finding that it was significantly downregulated in PCa tumor tissues and cell lines. Moreover, the expression of miR-340 was found to be correlated with the inhibition of cell proliferation, migration and invasion in vitro, and had a suppressive effect on tumor growth in a xenograft mouse model as well. The suppressive effect of miR-340 overexpression was observed in cell lines DU145 and BPH-1 which express wild-type (WT) p53. However, in the p53-null PC-3 cell line, the suppressive effect was not found, indicating that miR-340 may play a critical role in the p53 pathway. Further investigation revealed that mouse double minute 2 (MDM2), an important regulator of p53, was targeted by miR-340 through the direct binding to the 3'UTR of MDM2, which inhibited MDM2 translation. In addition, miR-340 expression stabilized p53 protein levels which caused an increase in p21 expression but a decrease in the anti‑apoptotic protein, BCL-2, in the p53 WT cell lines. Moreover, the miR-340-mediated inhibition of cell progression was mitigated by re-expressing MDM2 in the stable miR‑340-overexpressing PCa cell line, which harbors WT p53. Our findings suggest that miR-340 may function as a novel tumor suppressor in PCa through the MDM2-p53 pathway by directly targeting MDM2, which may be a promising miRNA-targeted therapy for PCa.

780. Prostate cancer: SLCO2B1 variants correlate with castration resistance.

作者: Peter Sidaway.
来源: Nat Rev Urol. 2016年13卷2期65页
共有 338735 条符合本次的查询结果, 用时 2.2211266 秒