1. 6-Methoxyflavone inhibits glycolytic energy metabolism in HeLa cells.
Enhanced glycolytic levels in cancer cells are a common characteristic of many cancer types. Modulation of glycolytic metabolism is crucial for enhancing the efficacy of cancer therapy. The specific role of 6-methoxyflavone in regulating glycolytic metabolism in cancer cells remains unclear. This study aimed to elucidate the impact of 6-methoxyflavone on glycolytic metabolism in cervical cancer cells and its clinical relevance.
2. The role of IGF2BP3/SPOP/c-Myc loop in paclitaxel resistance of endometrial cancer.
作者: Yidong Ge.;Lili Kong.;Yuxuan Li.;Zongdong Yu.;Fengguang Zhai.;Ziqing Zhan.;Gun Chen.;Shuyan Wang.;Haoyun Wang.;Yuxuan Wang.;Jianan Zhao.;Lechen Hu.;Jianing Mao.;Siyuan Wang.;Jiaxin Shi.;Mengxiang Zhao.;Pengrong Lou.;Meng Ye.;Xiaofeng Jin.
来源: Commun Biol. 2025年8卷1期624页
Paclitaxel combination therapy is the main chemotherapy regimen for endometrial cancer (EC); however, subsequent drug resistance is a bottleneck limiting its widespread clinical application. We found that human insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was abnormally elevated in paclitaxel-resistant EC cells and confirmed that the reduction of IGF2BP3 can effectively improve the sensitivity of EC cells to paclitaxel in vitro and in vivo. Mechanistically, elevated IGF2BP3 promotes the half-life of c-Myc by competitively inhibiting Speckle-type POZ protein (SPOP)-mediated ubiquitination and degradation of c-Myc. As a transcription factor, c-Myc can bind to the promoter of IGF2BP3, thus contributing to the increased transcription of IGF2BP3 via positive feedback and forming a signaling loop that ultimately causes the accumulation of c-Myc-induced paclitaxel resistance. Based on these findings, the application of c-Myc inhibitors (10058-F4) combined with paclitaxel helped paclitaxel-resistant EC cells regain paclitaxel sensitivity in vitro and in vivo. Together, we reveal the underlying mechanism of paclitaxel resistance in endometrial cancer cells and provide insights into treatment strategies for paclitaxel-resistant EC patients.
3. Disclosing antifungal activity of Huangqin decoction upon Trichophyton mentagrophytes and exploring its potential inhibitory mechanisms through transcriptome sequencing and qRT-PCR.
Trichophyton mentagrophytes (T. mentagrophytes) is a prevalent pathogen that causes human and animal dermatophytosis. The clinical treatment of the infections is challenging due to the prolonged treatment duration, limited efficacy, antifungal resistance and side effects of existing drugs. Modern research has reported that the classic Traditional Chinese medicine (TCM) prescription Huangqin decoction (HQD) along with its principal ingredients could exhibit antifungal properties. Given the valued advantages of TCM such as broad-spectrum antifungal activity, low incidence of drug resistance and low toxicity, this study investigated the antifungal activity of HQD against T. mentagrophytes and explored the potential inhibitory mechanism, aimed to provide new clues for the treatment of dermatophytosis. By detecting minimal inhibitory concentration (MIC) using the broth microdilution method, the results showed that HQD could significantly inhibit the growth of T. mentagrophytes, with a minimal inhibitory concentration (MIC) of 3.13 mg/mL. The transcriptome sequencing and quantitative real-time PCR (qRT-PCR) technology were combined to shed light on the complicated adaptive responses of T. mentagrophytes upon HQD. The results demonstrated that at MIC, compared with the control group, a total of 730 differentially expressed genes (DEGs) were detected in T. mentagrophytes after HQD exposure (FDR adjusted p-value < 0.05), of which 547 were up-regulated and 183 were down-regulated. These DEGs were abundant in "single-organism metabolic process", "catalytic activity" and "oxidoreductase activity", and were significantly enriched in seven signaling pathways including glutathione metabolism, DNA replication, glyoxylate and dicarboxylate metabolism, taurine and hypotaurine metabolism, carotenoid biosynthesis, ubiquitin-mediated proteolysis, and cyanoamino acid metabolism. The results of transcriptome profiling were verified using qRT-PCR for a subset of 10 DEGs. The overall evidence indicated that HQD had a significant anti-dermatophyte activity and the adaptive responses of T. mentagrophytes upon HQD might be related to targeting glutathione S-transferase (GST) gene that could conjugate with toxic xenobiotics to defense oxidative stress, the inhibition of DNA replication pathway by downgrading the DNA replication licensing factors MCM3, MCM5 and ribonuclease H1 (RNaseH1) genes, and the repressed expression of phosphatidylserine decarboxylase (PSD) gene related to phospholipid synthesis which was indispensable for hyphal morphology, hyphal differentiation and cell wall integrity. Our study showed a new theoretical basis for the effective control of T. mentagrophytes infection and the effect of HQD on fungi, which are expected to offer aids for discovering new antifungal agents upon dermatophytosis.
4. Overexpression of the Transcription Factor GmbZIP60 Increases Salt and Drought Tolerance in Soybean (Glycine max).
作者: Mengnan Chai.;Fan Yang.;Shuping Cai.;Tingyu Liu.;Xiaoyuan Xu.;Youmei Huang.;Xinpeng Xi.;Jiahong Yang.;Zhuangyuan Cao.;Ling Sun.;Danlin Dou.;Xunlian Fang.;Maokai Yan.;Hanyang Cai.
来源: Int J Mol Sci. 2025年26卷7期
The regulation of downstream responsive genes by transcription factors (TFs) is a critical step in the stress response system of plants. While bZIP transcription factors are known to play important roles in stress reactions, their functional characterization in soybeans remains limited. Here, we identified a soybean bZIP gene, GmbZIP60, which encodes a protein containing a typical bZIP domain with a basic region and a leucine zipper region. Subcellular localization studies confirmed that GmbZIP60 is localized in the nucleus. Expression analysis demonstrated that GmbZIP60 is induced by salt stress, drought stress, and various plant hormone treatments, including abscisic acid (ABA), ethylene (ETH), and methyl jasmonate acid (MeJA). Overexpressing GmbZIP60 (OE-GmbZIP60) in transgenic soybean and rice enhanced tolerance to both salt and drought stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the expression levels of abiotic stress-responsive genes were significantly higher in transgenic plants than in wild-type (WT) plants under stress conditions. Chromatin immunoprecipitation-qPCR (ChIP-qPCR) analysis further confirmed that GmbZIP60 directly binds to the promoters of abiotic stress-related genes induced by ABA, ETH, JA, and salicylic acid (SA). Overall, these findings revealed GmbZIP60 as a positive regulator of salt and drought stress tolerance.
5. Effect of Hormonal Treatments on Cannabinoid Content Levels in Female Hemp (Cannabis sativa L.) Inflorescences.
作者: Juyoung Kim.;Dong-Gun Kim.;Tae Hyun Ha.;Woon Ji Kim.;Jaihyunk Ryu.;Jin-Baek Kim.;Sang Hoon Kim.
来源: Int J Mol Sci. 2025年26卷7期
The diverse hormonal treatments applied to hemp (Cannabis sativa L.) carry significant implications for cultivation, and yield optimization across a range of applications, including fiber, seed, oil production, and the enhancement of medicinal compounds. However, there is no evidence concerning the long-term consequences of hormonal treatment. To determine the connection between the effects of hormonal treatment and cannabinoid accumulation, hemp plants were treated with γ-aminobutyric acid (GABA), abscisic acid (ABA), and salicylic acid (SA) to investigate their effects on gene expression and cannabinoid content levels in female inflorescences at 3 days and 4 weeks after treatment. The treatments influenced the transcript levels of five key cannabinoid biosynthesis genes, with 1.0 mM GABA significantly increasing OAC, THCAS, and CBCAS transcripts within 48 to 72 h. Additionally, 1.0 mM GABA led to a significant increase in tetrahydrocannabinol content by day three and significant increases in total cannabidiol and cannabinoid by week four. In addition, both ABA and SA induced transient, dose-dependent increases or decreases in gene expressions, but cannabinoid accumulation at 4 weeks showed no significant changes compared to the control. These results provide valuable insights for hormonal application in cultivation and the development of traits that enhance cannabinoid production in cannabis cultivation, which could significantly contribute to optimizing industrial applications.
6. MiRNA Omics Reveal the Mechanisms of the Dual Effects of Selenium Supplementation on the Development of the Silkworm (Bombyx mori).
作者: Wen-Jie Ge.;Fei Hu.;Ting-Ting Hong.;Kiran Thakur.;Shun-Ming Tang.;Jian-Guo Zhang.;Zhao-Jun Wei.
来源: Int J Mol Sci. 2025年26卷7期
This study explores the dual effects of selenium (Se) supplementation on silkworm development by analyzing miRNA expression profiles of fat bodies in silkworms under different Se concentrations (50 µM and 200 µM). Compared to the control, 84 miRNAs displayed different expression levels in the F_50 µM group, with 72 miRNAs up-regulated and 12 down-regulated; 152 miRNAs were differentially expressed in the F_200 µM group, with 124 up-regulated and 28 down-regulated. In the F_50 µM group, the target genes of differentially expressed miRNAs were mainly enriched in Toll and Imd signaling pathways, oxidative phosphorylation, and ribosome biogenesis in eukaryotes; however, mainly oxidative phosphorylation, ribosome biogenesis in eukaryotes, and the spliceosome were enriched in the F_200 µM group. Based on the results of the protein-protein interaction network and miRNA-target network, bmo-miR-2a-1-5p and bmo-miR-317-3p_L-2R+2 were screened as key miRNAs in the F_50 µM group and the F_200 µM group, respectively. The bmo-miR-2a-1-5p mainly targeted 10014128 (DREDD), 100862750 (ATF2), and 101744000 (Tak1) genes, which were enriched in Toll and Imd signaling pathways. The bmo-miR-317-3p_L-2R+2 primarily regulated 101738508 (SF3b) and 101746688 (Prp19) genes, which were in the spliceosome pathway. Thus, our results demonstrated that Se supplementation improved the silkworm development via bmo-miR-2a-1-5p miRNA regulation of the Toll and Imd signaling pathways and inhibited it via bmo-miR-317-3p_L-2R+2 miRNA targeting the spliceosome pathway. Our data revealed that 50 µM Se supplementation could improve silkworm productivity; meanwhile, a 200 µM Se treatment displayed toxic effects, leading to impaired development.
7. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders.
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
8. Mechanisms of Exogenous Brassinosteroids and Abscisic Acid in Regulating Maize Cold Stress Tolerance.
作者: Tao Yang.;Zelong Zhuang.;Jianwen Bian.;Zhenping Ren.;Wanling Ta.;Yunling Peng.
来源: Int J Mol Sci. 2025年26卷7期
Exogenous abscisic acid (ABA) and brassinosteroid (BR) play important roles in alleviating cold stress in maize. In this study, two maize inbred lines with differing cold tolerance were treated with exogenous ABA, BR, and their combined solution under cold stress conditions at 10 °C to investigate the effects of these treatments on the physiological characteristics of maize seedlings. The results indicated that cold stress significantly inhibited the growth of maize seedlings. Exogenous hormone treatments enhanced antioxidant enzyme activities and promoted the synthesis of osmolytes, thereby alleviating cold stress; however, the combined treatment (AR) did not significantly improve maize cold tolerance. Transcriptomic analysis revealed that pathways including plant hormone signal transduction, fatty acid elongation, and phenylpropanoid biosynthesis were involved in the interaction between ABA and BR. Weighted gene co-expression network analysis (WGCNA) identified four key candidate genes responsive to exogenous ABA and BR under cold stress, namely Zm00001eb343270, Zm00001eb401890, Zm00001eb206790, and Zm00001eb199820. Based on the gene annotation results, we speculate that ubiquitin-conjugating enzyme E2 O, tubulin-tyrosine ligase-like protein 12, the negative regulator of systemic acquired resistance SNI1, and mRNA stability regulators in response to DNA damage may be involved in regulating maize cold tolerance. These findings provide further evidence for the regulatory mechanisms by which exogenous ABA and BR affect maize cold tolerance and elucidate their interaction under cold stress.
9. A Major Latex Protein-Encoding Gene from Populus simonii × P. nigra (PsnMLP328) Contributes to Defense Responses to Salt and Cadmium Stress.
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 from Populus simonii × P. nigra and demonstrated its role in mitigating salt and cadmium stress. PsnMLP328 expression was up-regulated under both stress conditions, and its overexpression in tobacco enhanced resistance to these stresses, albeit through distinct mechanisms. Transgenic plants exhibited increased Cd2+ uptake and a higher biomass, alleviating Cd2+-induced growth inhibition. Additionally, PsnMLP328 boosted proline content, chlorophyll levels, and antioxidative enzyme activities (POD, SOD) under Cd2+ stress, likely by protecting cells from oxidative damage. Expression analysis revealed that PsnMLP328 down-regulated the cadmium transporter Nramp2 while up-regulating YSL2 (another cadmium transporter) and potassium channels (AKT1 and AKT2/3), suggesting its role in modulating K+ and Cd2+ homeostasis. These findings indicate that PsnMLP328 enhances tobacco resistance to salt and cadmium stress, particularly the latter. This study is the first to elucidate the function of poplar MLP family genes under salt and cadmium stress, advancing our understanding of MLP gene roles in heavy metal stress and offering new insights for remediating salinized and heavy metal-contaminated soils.
10. Exploring Multi-Target Therapeutic Strategies for Glioblastoma via Endogenous Network Modeling.
作者: Mengchao Yao.;Xiaomei Zhu.;Yong-Cong Chen.;Guo-Hong Yang.;Ping Ao.
来源: Int J Mol Sci. 2025年26卷7期
Medical treatment of glioblastoma presents a significant challenge. A conventional medication has limited effectiveness, and a single-target therapy is usually effective only in the early stage of the treatment. Recently, there has been increasing focus on multi-target therapies, but the vast range of possible combinations makes clinical experimentation and implementation difficult. From the perspective of systems biology, this study conducted simulations for multi-target glioblastoma therapy based on dynamic analysis of previously established endogenous networks, validated with glioblastoma single-cell RNA sequencing data. Several potentially effective target combinations were identified. The findings also highlight the necessity of multi-target rather than single-target intervention strategies in cancer treatment, as well as the promise in clinical applications and personalized therapies.
11. Genome-Wide Identification and Characterization of the Growth-Regulating Factor Gene Family Responsive to Abiotic Stresses and Phytohormone Treatments in Populus ussuriensis.
作者: Ying Zhao.;Yuqi Liu.;Yuan Chai.;Hedan Zhang.;Ming Wei.;Chenghao Li.
来源: Int J Mol Sci. 2025年26卷7期
As a unique class of plant-specific transcription factors, the GROWTH-REGULATING FACTORs (GRFs) play pivotal roles in regulating plant growth, development, and stress responses. In this study, the woody plant Populus ussuriensis was taken as the research object. Nineteen PuGRFs were identified and classified into six clades, and their potential evolutionary relationships were analyzed. The possible biological functions of PuGRFs were speculated through bioinformatics analysis. Combining real-time fluorescence quantitative PCR, PuGRFs were determined to be actively expressed in young tissues, and there are distinct tissue-specific expressions in the mature tissues of woody plants. We also conducted RT-qPCR of PuGRFs under different abiotic stresses and phytohormone treatments, most of the family members were induced under the treatments of methyl jasmonate (MEJA) and salicylic acid (SA), and we also found that 4 of 19 PuGRFs might participate in abscisic acid (ABA)-mediated osmotic stress in roots. Protein-protein interaction prediction analysis showed that six PuGRFs can interact with two types of growth-regulating interaction factors (GIFs). Further prediction and verification revealed that PuGRF1/2c and PuGRF1/2d, which belong to the same clade and have highly similar sequences, exhibited divergent interaction capabilities with GIFs, indicating evolutionary fine-tuning and functional redundancy within the GRF family. These findings lay a foundation for studying the molecular mechanisms of PuGRFs in P. ussuriensis, suggest that PuGRFs play important roles in responding to hormones and environmental changes, and the potential interaction relationships are worthy of exploration.
12. Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response.
作者: Gretchen E Dykes.;Yiping He.;Tony Jin.;Xuetong Fan.;Joe Lee.;Sue Reed.;Joseph Capobianco.
来源: Int J Mol Sci. 2025年26卷7期
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium's extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death.
13. The Influence of AQP5 on the Response to Hydrogen Peroxide in Breast Cancer Cell Lines.
作者: Ivan Lučić.;Monika Mlinarić.;Ana Čipak Gašparović.;Lidija Milković.
来源: Int J Mol Sci. 2025年26卷7期
Breast cancer is a heterogeneous disease with varying responses to therapies. While targeted treatments have advanced, conventional therapies inducing oxidative stress remain widely used. H2O2 has emerged as a therapeutic candidate due to its role in signaling and cell-function regulation. Its transport is tightly regulated through peroxiporins such as AQP5, expression of which is linked to poor prognosis and metastatic spread, and its role in therapy resistance remains underexplored. This study examined AQP5's role in the acute oxidative stress response. We overexpressed AQP5 in breast cancer cell lines with low basal levels-HR+ (MCF7), HER2+ (SkBr-3), and TNBC (SUM 159)-and exposed them to H2O2 for 24 h. We assessed cell viability, intracellular ROS, changes in AQP3 and AQP5, and key antioxidative and cancer-related pathways (NRF2, PI3K/AKT, FOXOs). AQP5 overexpression elicited a cell-type-specific response. H2O2 treatment reduced viability in SkBr-3-AQP5 and MCF7-AQP5 cells, increased ROS levels in MCF7-AQP5, and decreased ROS in SUM 159-AQP5. It also increased AQP3 in MCF7-AQP5 and differentially affected NRF2, FOXOs, and PI3K/AKT signaling, notably activating NRF2/AKR1B10 axis in MCF7-AQP5 and decreasing FOXO1 in SUM 159-AQP5. These findings highlight the need for further research into AQP5's role in the oxidative stress response in breast cancer cells.
14. Growth Hormone-Releasing Hormone Antagonists Increase Radiosensitivity in Non-Small Cell Lung Cancer Cells.
作者: Iacopo Gesmundo.;Francesca Pedrolli.;Francesca Romana Giglioli.;Florian Jazaj.;Giuseppina Granato.;Alessia Bertoldo.;Federica Bistolfi.;Vanesa Gregorc.;Anna Sapino.;Luisella Righi.;Renzhi Cai.;Wei Sha.;Medhi Wangpaichitr.;Mauro Papotti.;Ezio Ghigo.;Umberto Ricardi.;Andrew V Schally.;Riccarda Granata.
来源: Int J Mol Sci. 2025年26卷7期
Growth hormone-releasing hormone (GHRH) antagonists exert antitumor functions in different experimental cancers. However, their role in combination with radiotherapy in non-small cell lung cancer (NSCLC) remains unknown. Therefore, we investigated the radiosensitizing effect of GHRH antagonists in NSCLC. A549 and H522 NSCLC cell lines were exposed to ionizing radiation (IR) and GHRH antagonists MIA-602 and MIA-690, either individually or in combination. Cell viability and proliferation were evaluated by MTT, BrdU, flow cytofluorimetry, and clonogenic assays; gene and protein expression, signaling pathways, and apoptosis were analyzed by real-time PCR, Western blot, annexin staining, and caspase-3 assay. GHRH antagonists showed antitumor effects alone and potentiated IR-induced inhibition of cell viability and proliferation. The combination of MIA-690 and IR decreased the expression of GHRH receptor, its oncogenic splice variant 1, and IGF1 mRNA levels. Additionally, cell cycle inhibitors and proapoptotic markers were upregulated, whereas cyclins, oncogenic MYC, and the antiapoptotic protein Bcl-2 were downregulated. Radioresistance was prevented by MIA-690, which also blunted epithelial-mesenchymal transition by enhancing E-cadherin and reducing mesenchymal, oxidative, and proangiogenic effectors. Finally, both MIA-602 and MIA-690 enhanced radiosensitivity in primary human NSCLC cells. These findings highlight the potential of GHRH antagonists as radiosensitizers in NSCLC treatment.
15. Transcription Factor p73 Is a Predictor of Platinum Resistance and Promotes Aggressive Epithelial Ovarian Cancers.
作者: Ahmed Shoqafi.;Reem Ali.;Ayat Lashen.;Jennie N Jeyapalan.;Asmaa Ibrahim.;Michael S Toss.;Emad A Rakha.;Mashael Algethami.;Shatha Alqahtani.;Nigel P Mongan.;Dindial Ramotar.;Srinivasan Madhusudan.
来源: Int J Mol Sci. 2025年26卷7期
Resistance to platinum-based chemotherapy is a major clinical problem in ovarian cancers. The development of predictive biomarkers and therapeutic approaches is an area of unmet need. p73, a member of the p53 family of transcription factors, has essential functions during DNA repair, proliferation, invasion, and apoptosis. The role of p73 in ovarian cancer pathogenesis and response to therapy is largely unknown. The clinicopathological significance of p73 protein expression was evaluated in 278 human ovarian cancers. TP73 transcripts were investigated in publicly available clinical data sets (n = 522) and bioinformatics analysis was completed in the ovarian TCGA cohort (n = 182). Preclinically, p73 was overexpressed in A2780 platinum-sensitive ovarian cancer cells or depleted in platinum-resistant A2780cis cells and investigated for aggressive phenotypes, as well as platinum sensitivity. High p73 protein expression was linked with high grade (p < 0.001), advanced-stage disease (p = 0.002), and shorter progression-free survival (p < 0.0001). TP73 transcripts were significantly higher in tumours compared to normal tissue (p < 0.0001) and linked with shorter PFS (p = 0.047). Preclinically, p73 overexpression in A2780 cells increased proliferation, invasion, spheroid formation, and DNA repair capacity, and was associated with the upregulation of multiple DNA repair and platinum resistance-associated genes. In contrast, p73 deletion in A2780cis led to reduced proliferation and enhanced sensitivity to cisplatin, along with DNA double-strand break accumulation, G2/M cell cycle arrest, and increased apoptosis. We conclude that p73 is a predictor of platinum resistance. p73 can be exploited for targeted ovarian cancer therapy.
16. The Effect of Valine on the Synthesis of α-Casein in MAC-T Cells and the Expression and Phosphorylation of Genes Related to the mTOR Signaling Pathway.
作者: Min Yang.;Xinyu Zhang.;Yu Ding.;Liang Yang.;Wanping Ren.;Yu Gao.;Kangyu Yao.;Yuxin Zhou.;Wei Shao.
来源: Int J Mol Sci. 2025年26卷7期
This study utilized MAC-T cells cultured in vitro as a model to investigate the effects of varying concentrations of valine on α-casein synthesis and its underlying regulatory mechanisms. In this experiment, MAC-T cells were subjected to a 12 h starvation period, followed by the addition of valine in a range of concentrations (a total of seven concentrations: 0.000, 1.596, 3.192, 6.384, 12.768, 25.536, and 51.072 mM, as well as in 10% Fetal Bovine Serum). The suitable range of valine concentrations was determined using enzyme-linked immunosorbent assays (ELISAs). Real-time fluorescent quantitative PCR (RT-qPCR) and Western blot analyses were employed to evaluate the expression levels and phosphorylation states of the casein alpha s1 gene (CSN1S1), casein alpha s2 gene (CSN1S2) and mTOR signaling pathway-related genes. The functionality of the mTOR signaling pathway was further validated through rapamycin (100.000 nM) inhibition experiments. Results indicated that 1× Val (6.384 mM), 2× Val (12.768 mM), 4× Val (25.536 mM), and 8× Val (51.072 mM) significantly enhanced α-casein synthesis (p < 0.01). Within this concentration range, valine significantly upregulated the expression of CSN1S1, CSN1S2, and mTOR signaling pathway-related genes including the RagA gene (RRAGA), RagB gene (RRAGB), RagC gene (RRAGC), RagD gene (RRAGD), mTOR, raptor gene (RPTOR), and 4EBP1 gene (EIF4EBP1), eukaryotic initiation factor 4E (EIF4E), and S6 Kinase 1 (S6K1) (p < 0.01). Notably, the expression of the eukaryotic elongation factor 2 (EEF2) gene peaked at 1× Val (6.384 mM), while the expression of other genes reached their maximum at 4× Val (25.536 mM). Additionally, valine significantly increased the phosphorylation levels of mTOR, S6K1, 4E-binding protein-1 (4EBP1), ribosomal protein S6 (RPS6), and eEF2 (p < 0.01), with the highest phosphorylation levels of mTOR, S6K1, and RPS6 observed at 4× Val (25.536 mM). Rapamycin treatment significantly inhibited mTOR phosphorylation and α-casein synthesis (p < 0.01); however, the addition of 4× Val (25.536 mM) partially mitigated this inhibitory effect. In conclusion, valine promotes α-casein synthesis by activating the mTOR signaling pathway, with an optimal concentration of 4× Val (25.536 mM).
17. RBM17 Promotes the Chemoresistance of Oral Squamous Cancer Cells Through Checkpoint Kinase 1.
作者: Miyuka Nakahara.;Ryosuke Arai.;Isao Tokuoka.;Kazuhiro Fukumura.;Akila Mayeda.;Masakazu Yashiro.;Hirokazu Nakahara.
来源: Int J Mol Sci. 2025年26卷7期
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer in the head and neck region. In advanced stages of OSCC, chemotherapy is commonly used for treatment, despite some cancer cells having low sensitivity to anticancer drugs. We focused on RBM17/SPF45 as an essential drug-sensitizing factor in the context of malignant cells acquiring chemoresistance. Here, we demonstrate how RBM17 affects anticancer drug resistance in OSCC and we suggest the possible mechanism underlying its effects. After exposing oral cancer cell lines to fluorouracil (5-FU) and cisplatin, but not paclitaxel, the gene and protein expression of RBM17 increased. We found that siRNA-mediated RBM17-knockdown of the cell lines gained a significantly higher sensitivity to 5-FU, which was remarkably followed by a decrease in the expression of checkpoint kinase 1 (CHEK1) protein, whereas treatment with a CHEK1 inhibitor did not affect RBM17 protein expression in the oral cancer cell lines. These results indicate that RBM17 is a factor involved in the development of resistance to cytotoxic chemotherapy. We propose the underlying mechanism that RBM17 promotes CHEK1 protein expression in the ATM/ATR pathway, triggering the development of chemoresistance in cancer cells.
18. Cannabinerol Restores mRNA Splicing Defects Induced by β-Amyloid in an In Vitro Model of Alzheimer's Disease: A Transcriptomic Study.
作者: Maria Lui.;Stefano Salamone.;Federica Pollastro.;Emanuela Mazzon.;Osvaldo Artimagnella.
来源: Int J Mol Sci. 2025年26卷7期
Alzheimer's disease (AD) is the most common form of dementia, characterized by β-amyloid (Aβ) plaques and neurofibrillary tangles, leading to neuronal loss and cognitive impairments. Recent studies have reported the dysregulation of RNA splicing in AD pathogenesis. Our previous transcriptomic study demonstrated the neuroprotective effect of the phytocannabinoid cannabinerol (CBNR) against the cell viability loss induced by Aβ in differentiated SH-SY5Y cells. This study also highlighted the deregulation of genes involved in mRNA splicing after Aβ exposure or CBNR pre-treatment. Here, we investigated whether CBNR could restore the splicing defects induced by Aβ in an AD in vitro model. Using the rMATS computational tool for detecting differential alternative splicing events (DASEs) from RNA-Seq data, we obtained 96 DASEs regulated in both conditions and, remarkably, they were all restored by CBNR pre-treatment. The pathway analysis indicated an over-representation of the "Alzheimer's disease-amyloid secretase pathway". Additionally, we observed that Aβ exposure increased the frequency of retained introns (RIs) among the shared DASEs, and that this frequency returned to normality by CBNR pre-treatment. Interestingly, most of these RIs contain a premature in-frame stop codon within the RNA sequence. Finally, analyzing the DASE regions for miRNA hybridization, we found 33 potential DASE/miRNA interactions that were relevant in AD pathogenesis. These findings revealed a novel trans-gene regulation by CBNR, potentially explaining part of its neuroprotective role. This is the first study demonstrating the involvement of a cannabinoid in the regulation of mRNA splicing in an AD model.
19. Comprehensive Transcriptomic Analysis of the Isolated Candida tropicalis with Enhanced Tolerance of Furfural Inhibitor.
作者: Jianguang Liu.;Zifu Ni.;Bingyu Jiao.;Yuansen Hu.;Zhongke Sun.;Dapeng Wu.;Qipeng Yuan.;Yuhuan Han.;Le Wang.
来源: Int J Mol Sci. 2025年26卷7期
The Candida tropicalis (C. tropicalis) named YB-3 was isolated by the Atmospheric and room temperature plasma mutagenesis from 6.5 g/L furfural tolerance. The comprehensive transcriptomic analysis of YB-3 was performed. During the stress of furfural treatment, C. tropicalis YB-3 protected cells from oxidative stress damage by increasing the accumulation of the glutathione reductase gene and the expression of antioxidant enzymes, with the enhancement of the inositol phosphate synthase to maintain the structural integrity and transport function of the inner membrane system, thereby affecting the cells' tolerance. Through the gene knockout and exogenous verification, it was further confirmed that the pathways involved in the three genes of sulfate adenosine transferase gene, glutathione reductase gene, and inositol phosphate synthase gene had significant effects on improving the tolerance of the strain to furfural. The deep excavation of furfural-tolerant gene components and directional modification of C. tropicalis to enhance tolerance are key steps for improving the utilization rate of biomass.
20. Characterizing Common Factors Affecting Replication Initiation During H2O2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli.
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the ΔfurΔbfrΔdps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression).
|