1. Comparison of the Effects of SGLT-2i Versus GLP-1RA on Cardiovascular and Renal Outcomes in Patients With Type 2 Diabetes, Based on Baseline Renal Function.
Finding no head-to-head research evaluating the cardiovascular and renal benefits of sodium-glucose cotransporter 2 inhibitors (SGLT-2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) in patients with type 2 diabetes (T2D) at different baseline renal function, we performed a network meta-analysis to compare the two drugs indirectly. Systematic literature searches were conducted of the PubMed, Cochrane Library, Web of Science, and Embase databases, covering their inception until 7 January 2025. Randomized controlled trials (RCTs) comparing the effects of SGLT-2i and GLP-1RA in T2D with different glomerular filtration rates (eGFRs) were selected. Results were reported as risk ratios (RRs) with corresponding 95% CIs. Finally, 10 RCTs involving 87,334 patients with T2D were included. In patients with an eGFR >90 mL/min/1.73 m2, GLP-1RA exhibited a superior ability to reduce the risk of all-cause death compared with SGLT-2i (RR 0.75; 95% CI 0.58, 0.97), but it was less effective in reducing the risk of renal outcome (RR 1.80; 95% CI 1.15, 2.84) in patients with an eGFR 60-90 mL/min/1.73 m2. Conversely, in patients with eGFR 30-60 and 60-90 mL/min/1.73 m2, GLP-1RA did not show an advantage in reducing the risk of hospitalization for heart failure (RR 1.87 [95% CI 1.15, 3.04] and 1.37 [95% CI 1.05, 1.78], respectively).
2. Microglia Mediate Metabolic Dysfunction From Common Air Pollutants Through NF-κB Signaling.
作者: Lucas K Debarba.;Hashan S M Jayarathne.;Lukas Stilgenbauer.;Ana L Terra Dos Santos.;Lisa Koshko.;Sydney Scofield.;Ryan Sullivan.;Abhijit Mandal.;Ulrike Klueh.;Marianna Sadagurski.
来源: Diabetes. 2024年73卷12期2065-2077页
The prevalence of type 2 diabetes (T2D) poses a significant health challenge, yet the contribution of air pollutants to T2D epidemics remains under-studied. Several studies demonstrated a correlation between exposure to volatile organic compounds (VOCs) in indoor/outdoor environments and T2D. Here, we conducted the first meta-analysis, establishing a robust association between exposure to benzene, a prevalent airborne VOC, and insulin resistance in humans across all ages. We used a controlled benzene exposure system, continuous glucose monitoring approach, and indirect calorimetry in mice, to investigate the underlying mechanisms. Following exposure, disruptions in energy homeostasis, accompanied by modifications in the hypothalamic transcriptome and alterations in insulin and immune signaling, were observed exclusively in males, leading to a surge in blood glucose levels. In agreement, RNA sequencing of microglia revealed increased expression of genes associated with immune response and NF-κB signaling. Selective ablation of IKKβ in immune cells (Cx3cr1GFPΔIKK) or exclusively in microglia (Tmem119ERΔIKK) in adult mice alleviated benzene-induced gliosis, restored energy homeostasis and hypothalamic gene expression, and protected against hyperglycemia. We conclude that the microglial NF-κB pathway plays a critical role in chemical-induced metabolic disturbances, revealing a vital pathophysiological mechanism linking exposure to airborne toxicants and the onset of metabolic diseases.
3. Protein Markers of Diabetes Discovered in an African American Cohort.
作者: Zsu-Zsu Chen.;Yan Gao.;Michelle J Keyes.;Shuliang Deng.;Michael Mi.;Laurie A Farrell.;Dongxiao Shen.;Usman A Tahir.;Daniel E Cruz.;Debby Ngo.;Mark D Benson.;Jeremy M Robbins.;Adolfo Correa.;James G Wilson.;Robert E Gerszten.
来源: Diabetes. 2023年72卷4期532-543页
Proteomics has been used to study type 2 diabetes, but the majority of available data are from White participants. Here, we extend prior work by analyzing a large cohort of self-identified African Americans in the Jackson Heart Study (n = 1,313). We found 325 proteins associated with incident diabetes after adjusting for age, sex, and sample batch (false discovery rate q < 0.05) measured using a single-stranded DNA aptamer affinity-based method on fasting plasma samples. A subset was independent of established markers of diabetes development pathways, such as adiposity, glycemia, and/or insulin resistance, suggesting potential novel biological processes associated with disease development. Thirty-six associations remained significant after additional adjustments for BMI, fasting plasma glucose, cholesterol levels, hypertension, statin use, and renal function. Twelve associations, including the top associations of complement factor H, formimidoyltransferase cyclodeaminase, serine/threonine-protein kinase 17B, and high-mobility group protein B1, were replicated in a meta-analysis of two self-identified White cohorts-the Framingham Heart Study and the Malmö Diet and Cancer Study-supporting the generalizability of these biomarkers. A selection of these diabetes-associated proteins also improved risk prediction. Thus, we uncovered both novel and broadly generalizable associations by studying a diverse population, providing a more complete understanding of the diabetes-associated proteome.
4. Insulin Sensitization Following a Single Exercise Bout Is Uncoupled to Glycogen in Human Skeletal Muscle: A Meta-analysis of 13 Single-Center Human Studies.
作者: Janne R Hingst.;Johan D Onslev.;Stephanie Holm.;Rasmus Kjøbsted.;Christian Frøsig.;Kohei Kido.;Dorte E Steenberg.;Magnus R Larsen.;Jonas M Kristensen.;Christian Strini Carl.;Kim Sjøberg.;Farah S L Thong.;Wim Derave.;Christian Pehmøller.;Nina Brandt.;Glenn McConell.;Jørgen Jensen.;Bente Kiens.;Erik A Richter.;Jørgen F P Wojtaszewski.
来源: Diabetes. 2022年71卷11期2237-2250页
Exercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106). Insulin-stimulated glucose uptake was potentiated and occurred substantially faster in the prior contracted muscles. In this otherwise homogenous group of individuals, a remarkable biological diversity in the glucometabolic responses to insulin is apparent both in skeletal muscle and at the whole-body level. In contrast to the prevailing concept, our analyses reveal that insulin-stimulated muscle glucose uptake and the potentiation thereof by exercise are not associated with muscle glycogen synthase activity, muscle glycogen content, or degree of glycogen utilization during the preceding exercise bout. Our data further suggest that the phenomenon of improved insulin sensitivity in prior contracted muscle is not regulated in a homeostatic feedback manner from glycogen. Instead, we put forward the idea that this phenomenon is regulated by cellular allostatic mechanisms that elevate the muscle glycogen storage set point and enhance insulin sensitivity to promote the uptake of glucose toward faster glycogen resynthesis without development of glucose overload/toxicity or feedback inhibition.
5. Recessive Genome-Wide Meta-analysis Illuminates Genetic Architecture of Type 2 Diabetes.
作者: Mark J O'Connor.;Philip Schroeder.;Alicia Huerta-Chagoya.;Paula Cortés-Sánchez.;Silvía Bonàs-Guarch.;Marta Guindo-Martínez.;Joanne B Cole.;Varinderpal Kaur.;David Torrents.;Kumar Veerapen.;Niels Grarup.;Mitja Kurki.;Carsten F Rundsten.;Oluf Pedersen.;Ivan Brandslund.;Allan Linneberg.;Torben Hansen.;Aaron Leong.;Jose C Florez.;Josep M Mercader.
来源: Diabetes. 2022年71卷3期554-565页
Most genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered. We conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 case subjects and 279,507 control subjects from 7 European-ancestry cohorts, including the UK Biobank. We identified 51 loci associated with type 2 diabetes, including five variants undetected by prior additive analyses. Two of the five variants had minor allele frequency of <5% and were each associated with more than a doubled risk in homozygous carriers. Using two additional cohorts, FinnGen and a Danish cohort, we replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19; P = 1 × 10-16) and a stronger effect in men than in women (for interaction, P = 7 × 10-7). The signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL cholesterol and a 20% increase in triglycerides; colocalization analysis linked this signal to reduced expression of the nearby PELO gene. These results demonstrate that recessive models, when compared with GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.
6. An Expanded Genome-Wide Association Study of Fructosamine Levels Identifies RCN3 as a Replicating Locus and Implicates FCGRT as the Effector Transcript.
作者: Fernando Riveros-Mckay.;David Roberts.;Emanuele Di Angelantonio.;Bing Yu.;Nicole Soranzo.;John Danesh.;Elizabeth Selvin.;Adam S Butterworth.;Inês Barroso.
来源: Diabetes. 2022年71卷2期359-364页
Fructosamine is a measure of short-term glycemic control, which has been suggested as a useful complement to glycated hemoglobin (HbA1c) for the diagnosis and monitoring of diabetes. To date, a single genome-wide association study (GWAS) including 8,951 U.S. White and 2,712 U.S. Black individuals without a diabetes diagnosis has been published. Results in Whites and Blacks yielded different association loci, near RCN3 and CNTN5, respectively. In this study, we performed a GWAS on 20,731 European-ancestry blood donors and meta-analyzed our results with previous data from U.S. White participants from the Atherosclerosis Risk in Communities (ARIC) study (Nmeta = 29,685). We identified a novel association near GCK (rs3757840, βmeta = 0.0062; minor allele frequency [MAF] = 0.49; Pmeta = 3.66 × 10-8) and confirmed the association near RCN3 (rs113886122, βmeta = 0.0134; MAF = 0.17; Pmeta = 5.71 × 10-18). Colocalization analysis with whole-blood expression quantitative trait loci data suggested FCGRT as the effector transcript at the RCN3 locus. We further showed that fructosamine has low heritability (h2 = 7.7%), has no significant genetic correlation with HbA1c and other glycemic traits in individuals without a diabetes diagnosis (P > 0.05), but has evidence of shared genetic etiology with some anthropometric traits (Bonferroni-corrected P < 0.0012). Our results broaden knowledge of the genetic architecture of fructosamine and prioritize FCGRT for downstream functional studies at the established RCN3 locus.
|