当前位置: 首页 >> 检索结果
共有 16056 条符合本次的查询结果, 用时 5.1028431 秒

81. Three research stars fighting to protect coastlines.

作者: Sandy Ong.;Jiaqi Shi.
来源: Nature. 2025年

82. The leading cities in the world for high-quality research in 2024.

来源: Nature. 2025年

83. Sinking cities: how China is moving subsidence research forward.

作者: Xiaoying You.
来源: Nature. 2025年

85. Who will fill the climate-data void left by the Trump administration?

作者: Brittany Janis.;Cathy Richards.
来源: Nature. 2025年

86. Why coastal megacities should look inland for research collaborations.

作者: Bec Crew.
来源: Nature. 2025年

87. Volcano mega-eruptions lead to parched times.

来源: Nature. 2025年647卷8090期562页

88. How ancient humans bred and traded the first domestic dogs.

作者: Ewen Callaway.
来源: Nature. 2025年

89. CRISPR vs cholesterol: can gene editing prevent heart disease?

作者: Heidi Ledford.
来源: Nature. 2025年

90. Tiny robots swim through blood, deliver drugs - and then dissolve.

作者: Elizabeth Gibney.
来源: Nature. 2025年

91. 'Tiny' AI model beats massive LLMs at logic test.

作者: Elizabeth Gibney.
来源: Nature. 2025年

92. The US government shutdown is over: what's next for scientists.

作者: Jeff Tollefson.;Alexandra Witze.;Dan Garisto.
来源: Nature. 2025年

93. Could China's cautious new research strategy stifle its science-leadership ambitions?

作者: Futao Huang.
来源: Nature. 2025年

94. Pig-organ transplants are often rejected - researchers find a way to stop it.

作者: Rachel Fieldhouse.
来源: Nature. 2025年

95. Researching sustainable food production, with help from the cows.

作者: Rachael Pells.
来源: Nature. 2025年

96. Multi-omics analysis of a pig-to-human decedent kidney xenotransplant.

作者: Eloi Schmauch.;Brian D Piening.;Alexa K Dowdell.;Maedeh Mohebnasab.;Simon H Williams.;Alexey Stukalov.;Fred L Robinson.;Robin Bombardi.;Ian Jaffe.;Karen Khalil.;Jacqueline Kim.;Imad Aljabban.;Tal Eitan.;Darragh P O'Brien.;Mercy Rophina.;Chan Wang.;Alexandra Q Bartlett.;Francesca Zanoni.;Jon Albay.;David Andrijevic.;Berk Maden.;Vincent Mauduit.;Susanna Vikman.;Diana Argibay.;Zasha Zayas.;Leah Wu.;Kiana Moi.;Billy Lau.;Weimin Zhang.;Loren Gragert.;Elaina Weldon.;Hui Gao.;Lauren Hamilton.;Larisa Kagermazova.;Brendan R Camellato.;Divya Gandla.;Riyana Bhatt.;Sarah Gao.;Rudaynah A Al-Ali.;Alawi H Habara.;Andrew Chang.;Shadi Ferdosi.;Han M Chen.;Jennifer D Motter.;Fiorella A Chacon.;Scott C Thomas.;Deepak Saxena.;Robert L Fairchild.;Alexandre Loupy.;Adriana Heguy.;Ali Crawford.;Serafim Batzoglou.;Michael P Snyder.;Asim Siddiqui.;Michael V Holmes.;Anita S Chong.;Minna U Kaikkonen.;Suvi Linna-Kuosmanen.;David Ayares.;Marc Lorber.;Anoma Nellore.;Edward Y Skolnik.;Aprajita Mattoo.;Vasishta S Tatapudi.;Ryan Taft.;Massimo Mangiola.;Qian Guo.;Ramin S Herati.;Jeffrey Stern.;Adam Griesemer.;Manolis Kellis.;Jef D Boeke.;Robert A Montgomery.;Brendan J Keating.
来源: Nature. 2025年
Organ shortage remains a major challenge in transplantation, and gene-edited pig organs offer a promising solution1-3. Despite gene-editing, the immune reactions following xenotransplantation can still cause transplant failure4. To understand the immunological response of a pig-to-human kidney xenotransplantation, we conducted large-scale multi-omics profiling of the xenograft and the host's blood over a 61-day procedure in a brain-dead human (decedent) recipient. Blood plasmablasts, natural killer (NK) cells, and dendritic cells increased between postoperative day (POD)10 and 28, concordant with expansion of IgG/IgA B-cell clonotypes, and subsequent biopsy-confirmed antibody-mediated rejection (AbMR) at POD33. Human T-cell frequencies increased from POD21 and peaked between POD33-49 in the blood and xenograft, coinciding with T-cell receptor diversification, expansion of a restricted TRBV2/J1 clonotype and histological evidence of a combined AbMR and cell-mediated rejection at POD49. At POD33, the most abundant human immune population in the graft was CXCL9+ macrophages, aligning with IFN-γ-driven inflammation and a Type I immune response. In addition, we see evidence of interactions between activated pig-resident macrophages and infiltrating human immune cells. Xenograft tissue showed pro-fibrotic tubular and interstitial injury, marked by S100A65, SPP16 (Osteopontin), and COLEC117, at POD21-POD33. Proteomics profiling revealed human and pig complement activation, with decreased human component after AbMR therapy with complement inhibition. Collectively, these data delineate the molecular orchestration of human immune responses to a porcine kidney, revealing potential immunomodulatory targets for improving xenograft survival.

97. Physiology and immunology of pig-to-human decedent kidney xenotransplant.

作者: Robert A Montgomery.;Jeffrey M Stern.;Farshid Fathi.;Nathan Suek.;Jacqueline I Kim.;Karen Khalil.;Benjamin Vermette.;Vasishta S Tatapudi.;Aprajita Mattoo.;Edward Y Skolnik.;Ian S Jaffe.;Imad Aljabban.;Tal Eitan.;Shivani Bisen.;Elaina P Weldon.;Valentin Goutaudier.;Erwan Morgand.;Fariza Mezine.;Alessia Giarraputo.;Idris Boudhabhay.;Patrick Bruneval.;Aurelie Sannier.;Kevin Breen.;Yasmeen S Saad.;Constanza Bay Muntnich.;Simon H Williams.;Weimin Zhang.;Larisa Kagermazova.;Eloi Schmauch.;Chandra Goparaju.;Rebecca Dieter.;Nikki Lawson.;Amy Dandro.;Ana Laura Fazio-Kroll.;Lars Burdorf.;David Ayares.;Marc Lorber.;Dorry Segev.;Nicole Ali.;David S Goldfarb.;Victoria Costa.;Timothy Hilbert.;Sapna A Mehta.;Ramin S Herati.;Harvey I Pass.;Ming Wu.;Jef D Boeke.;Brendan Keating.;Massimo Mangiola.;Philip M Sommer.;Alexandre Loupy.;Adam Griesemer.;Megan Sykes.
来源: Nature. 2025年
Xenotransplantation of genetically-modified pig kidneys offers a solution to the scarcity of organs for end-stage renal disease patients.1 We performed a 61-day alpha-Gal knock-out pig kidney and thymic autograft transplant into a nephrectomized brain-dead human using clinically approved immunosuppression, without CD40 blockade or additional genetic modification. Hemodynamic and electrolyte stability and dialysis independence were achieved. Post-operative day (POD) 10 biopsies revealed glomerular IgM and IgA deposition, activation of early complement components and mesangiolysis with stable renal function without proteinuria, a phenotype not seen in allotransplantation. On POD 33, an abrupt increase in serum creatinine was associated with antibody-mediated rejection and increased donor-specific IgG. Plasma exchange, C3/C3b inhibition and rabbit anti-thymocyte globulin (rATG), completely reversed xenograft rejection. Pre-existing donor-reactive T cell clones expanded progressively in the circulation post-transplant, acquired an effector transcriptional profile and were detected in the POD 33 rejecting xenograft prior to rATG treatment. This study provides the first long-term physiologic, immunologic, and infectious disease monitoring of a pig-to-human kidney xenotransplant and indicates that pre-existing xenoreactive T cells and induced antibodies to unknown epitope(s) present a major challenge, despite significant immunosuppression. It also demonstrates that a minimally gene-edited pig kidney can support long-term life-sustaining physiologic functions in a human.

98. James Watson obituary: co-discoverer of DNA's double helix who reshaped modern biology.

作者: Jan Witkowski.
来源: Nature. 2025年647卷8090期583页

99. Author Correction: Learning the natural history of human disease with generative transformers.

作者: Artem Shmatko.;Alexander Wolfgang Jung.;Kumar Gaurav.;Søren Brunak.;Laust Hvas Mortensen.;Ewan Birney.;Tom Fitzgerald.;Moritz Gerstung.
来源: Nature. 2025年

100. Estimation and mapping of the missing heritability of human phenotypes.

作者: Pierrick Wainschtein.;Yuanxiang Zhang.;Jeremy Schwartzentruber.;Irfahan Kassam.;Julia Sidorenko.;Petko P Fiziev.;Huanwei Wang.;Jeremy McRae.;Richard Border.;Noah Zaitlen.;Sriram Sankararaman.;Michael E Goddard.;Jian Zeng.;Peter M Visscher.;Kyle Kai-How Farh.;Loic Yengo.
来源: Nature. 2025年
Rare coding variants shape inter-individual differences in human phenotypes1. However, the contribution of rare non-coding variants to those differences remains poorly characterized. Here we analyse whole-genome sequence (WGS) data from 347,630 individuals with European ancestry in the UK Biobank2,3 to quantify the relative contribution of 40 million single-nucleotide and short indel variants (with a minor allele frequency (MAF) larger than 0.01%) to the heritability of 34 complex traits and diseases. On average across phenotypes, we find that WGS captures approximately 88% of the pedigree-based narrow sense heritability: that is, 20% from rare variants (MAF < 1%) and 68% from common variants (MAF ≥ 1%). We show that coding and non-coding genetic variants account for 21% and 79% of the rare-variant WGS-based heritability, respectively. We identified 15 traits with no significant difference between WGS-based and pedigree-based heritability estimates, suggesting their heritability is fully accounted for by WGS data. Finally, we performed genome-wide association analyses of all 34 phenotypes and, overall, identified 11,243 common-variant associations and 886 rare-variant associations. Altogether, our study provides high-precision estimates of rare-variant heritability, explains the heritability of many phenotypes and demonstrates for lipid traits that more than 25% of rare-variant heritability can be mapped to specific loci using fewer than 500,000 fully sequenced genomes.
共有 16056 条符合本次的查询结果, 用时 5.1028431 秒