9621. Investigating the interaction between organic anion transporter 1 and ochratoxin A: An in silico structural study to depict early molecular events of substrate recruitment and the impact of single point mutations.
Organic anion transporters (OATs) belong to a subgroup of the solute carrier 22 transporter family. OATs have a central role in xenobiotic disposition affecting the toxicokinetics of its substrates and inter-individual differences in their expression, activity and function impact both toxicokinetics and toxicodynamics. Amongst OATs, OAT1 (solute carrier family 22 member 6) is involved in the urinary excretion of many xenobiotics bringing substrates into renal proximal tubular cells which can then be secreted across the apical membrane into the tubule lumen. The mycotoxin ochratoxin A has been shown to have a high affinity for OAT1, which is an important renal transporter involved in its urinary excretion. Nowadays, molecular modeling techniques are widely applied to assess protein-ligand interactions and may provide a tool to depict the mechanic of xenobiotic action be it toxicokinetics or toxicodynamics. This work provides a structured pipeline consisting of docking and molecular dynamic simulations to study OAT1-ligand interactions and the impact of OAT1 polymorphisms on such interactions. Such a computational structure-based analytical framework allowed to: i) model OAT1-substrate complex formation and depict the features correlating its sequence, structure and its capability to recruit substrates; and ii) investigate the impact of OAT1 missense mutations on substrate recruitment. Perspectives on applying such a structured pipeline to xenobiotic-metabolising enzymes are discussed.
9622. Recruitment of the TolA Protein to Cell Constriction Sites in Escherichia coli via Three Separate Mechanisms, and a Critical Role for FtsWI Activity in Recruitment of both TolA and TolQ.
The Tol-Pal system of Gram-negative bacteria helps maintain the integrity of the cell envelope and ensures that invagination of the envelope layers during cell fission occurs in a well-coordinated manner. In Escherichia coli, the five Tol-Pal proteins (TolQ, -R, -A, and -B and Pal) accumulate at cell constriction sites in a manner that normally requires the activity of the cell constriction initiation protein FtsN. While septal recruitment of TolR, TolB, and Pal also requires the presence of TolQ and/or TolA, the latter two can recognize constriction sites independently of the other system proteins. What attracts TolQ or TolA to these sites is unclear. We show that FtsN indirectly attracts both proteins and that PBP1A, PBP1B, and CpoB are dispensable for their septal recruitment. However, the β-lactam aztreonam readily interferes with the septal accumulation of both TolQ and TolA, indicating that FtsN-stimulated production of septal peptidoglycan by the FtsWI synthase is critical to their recruitment. We also discovered that each of TolA's three domains can separately recognize division sites. Notably, the middle domain (TolAII) is responsible for directing TolA to constriction sites in the absence of other Tol-Pal proteins and CpoB, while recruitment of TolAI requires TolQ and that of TolAIII requires a combination of TolB, Pal, and CpoB. Additionally, we describe the construction and use of functional fluorescent sandwich fusions of the ZipA division protein, which should be more broadly valuable in future studies of the E. coli cell division machinery. IMPORTANCE Cell division (cytokinesis) is a fundamental biological process that is incompletely understood for any organism. Division of bacterial cells relies on a ring-like machinery called the septal ring or divisome that assembles along the circumference of the mother cell at the site where constriction will eventually occur. In the well-studied bacterium Escherichia coli, this machinery contains over 30 distinct proteins. We studied how two such proteins, TolA and TolQ, which also play a role in maintaining the integrity of the outer membrane, are recruited to the machinery. We find that TolA can be recruited by three separate mechanisms and that both proteins rely on the activity of a well-studied cell division enzyme for their recruitment.
9623. Acetylcholinesterase from the charru mussel Mytella charruana: kinetic characterization, physicochemical properties and potential as in vitro biomarker in environmental monitoring of mollusk extraction areas.
作者: Glauber Pereira Carvalho Dos Santos.;Caio Rodrigo Dias de Assis.;Vagne Melo Oliveira.;Thiago Barbosa Cahu.;Valdir Luna Silva.;Juliana Ferreira Santos.;Gilvan Takeshi Yogui.;Ranilson Souza Bezerra.
来源: Comp Biochem Physiol C Toxicol Pharmacol. 2022年252卷109225页
Acetylcholinesterase (AChE; EC 3.1.1.7) from aquatic organisms have been used to evaluate the exposure of specimens to pesticides and heavy metals at sublethal levels in environmental samples. AChE of Mytella charruana was extracted to characterize its physicochemical and kinetic properties as well as the effect of organophosphate (dichlorvos, diazinon, chlorpyrifos, methyl-parathion and temephos), carbamates (carbaryl, carbofuran and aldicarb), benzoylureas (diflubenzuron and novaluron), pyrethroid (cypermethrin) and juvenile hormone analog - JHA (pyriproxyfen) and the effect of metal ions: Hg2+, Cd2+, Pb2+, As3+, Cu2+ and Zn2+, in order to evaluate the potential of the enzyme as biomarker. The optimum pH of M. charruana AChE was 8.5 and the maximum activity peak occurred at 48 °C, being highly thermostable maintaining 97.8% of its activity after incubation at 60 °C. The Michaelis-Menten constants (km) for the substrates acetylthiocholine and propionylthiocholine were 2.8 ± 1.26 and 4.94 ± 6.9 mmol·L-1, respectively. The Vmax values for the same substrates were 22.6 ± 0.90 and 10.2 ± 4.94 mU·mg-1, respectively. Specific inhibition results suggest an AChE presenting active site with dimensions between those of AChE and butyrylcholinesterase (BChE). The IC20 values related to the effect of the pesticides on the enzyme showed higher inhibitory power of temephos (0.17 μmol·L-1), followed by aldicarb (0.19 μmol·L-1) and diflubenzuron (0.23 μmol·L-1). Metal ions inhibited M. charruana enzyme in the following order: Hg2+ > Pb2+ > Cd2+ > As3+ > Cu2+ > Zn2+. These data suggest that the enzyme showed potential as in vitro biomarker of the exposure to temephos, mercury, zinc and copper.
9624. Salmo trutta is more sensitive than Oncorhynchus mykiss to early-life stage exposure to retene.
作者: Cyril Rigaud.;Julia Härme.;Eeva-Riikka Vehniäinen.
来源: Comp Biochem Physiol C Toxicol Pharmacol. 2022年252卷109219页
Salmonids are known to be among the most sensitive fish to dioxin-like compounds (DLCs), but very little is known about the sensitivity of the brown trout (Salmo trutta), which has declined and is endangered in several countries of Europe and Western Asia. We investigated the sensitivity of brown trout larvae to a widespread dioxin-like PAH, retene (3.2 to 320 μg.L-1), compared to the larvae of a salmonid commonly used in toxicology studies, the rainbow trout (Oncorhynchus mykiss). Mortality, growth, cyp1a induction and the occurrence of deformities were measured after 15 days of exposure. Brown trout larvae showed a significantly higher mortality at 320 μg.L-1 compared to rainbow trout larvae. While the occurrence of deformities was only significantly increased at 320 μg.L-1 for the rainbow trout, brown trout larvae displayed pericardial edemas and hemorrhages already at 10 or 100 μg.L-1. cyp1a induction was increased significantly already at ≥3.2 μg.L-1 for the brown trout, versus ≥32 μg.L-1 for the rainbow trout. Least square regression analysis of the concentration-response relationships suggested that S. trutta larvae were at least 2 times more sensitive than O. mykiss larvae for cyp1a induction. The present study suggests that S. trutta larvae are more sensitive than O. mykiss larvae to a potent DLC, retene. As it is possible that S. trutta populations have declined partly because of pollution by DLCs, we recommend generating more data regarding the sensitivity of threatened fish populations, in order to ensure better risk assessment.
9625. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes.
作者: Xue Wang.;Xueliang Yang.;Jiazhen Wang.;Lei Li.;Yun Zhang.;Meng Jin.;Xiqiang Chen.;Chen Sun.;Rongchun Wang.;Kechun Liu.
来源: Comp Biochem Physiol C Toxicol Pharmacol. 2022年252卷109228页
Sanguinarine, a plant phytoalexin, possesses extensive biological activities including antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect. But its cardiotoxicity has rarely been studied. Here, we assess the cardiotoxicity of sanguinarine in vivo using larval zebrafish from 48 hpf to 96 hpf. The results show that sanguinarine caused severe malformation and the dysfunction of the heart including reductions of heart rate, red blood cell number, blood flow dynamics, stroke volume and increase of SV-BA distance, subintestinal venous congestion. Further studies showed that apoptosis in the zebrafish heart region was observed after sanguinarine exposure using TUNEL assay and AO staining method. In addition, the genes, such as sox9b, myl7, nkx2.5 and bmp10, which play crucial parts in the development and the function of the heart, were changed after sanguinarine treatment. caspase3, caspase9, bax and bcl2, apoptosis-related genes, were also altered by sanguinarine. Further studies were performed to study the cardiotoxicity in vitro using cardiomyocytes HL1 cell line. The results showed that remarkable increase of apoptosis and ROS level in HL1 cells were induced by sanguinarine. Moreover, the MAPK pathway (JNK and P38) were notably enhanced and involved in the cardiotoxicity induced by sanguinarine. Our findings will provide better understanding of sanguinarine in the toxic effect on heart.
9626. Identification of molecular subtyping system and four-gene prognostic signature with immune-related genes for uveal melanoma.
Immunotherapy is the most promising treatment for uveal melanoma patients with metastasis. Tumor microenvironment plays an essential role in tumor progression and greatly affects the efficacy of immunotherapy. This research constructed an immune-related subtyping system and discovered immune prognostic genes to further understand the immune mechanism in uveal melanoma. Immune-related genes were determined from literature. Gene expression profiles of uveal melanoma were clustered using consensus clustering based on immune-related genes. Subtypes were further divided by applying immune landscape, and weighted correlation network analysis was performed to construct immune gene modules. Univariate Cox regression analysis was conducted to generate a prognostic model. Enriched immune cells were determined after gene set enrichment analysis. Three major immune subtypes (IS1, IS2, and IS3) were identified, and IS2 could be further divided into IS2A and IS2B. The subtypes were closely associated with uveal melanoma prognosis. IS3 group had the most favorable prognosis and was sensitive to PD-1 inhibitor. Immune genes in IS1 group showed an overall higher expression than IS3 group. Six immune gene modules were identified, and the enrichment score of immune genes varied within immune subtypes. Four immune prognostic genes (IL32, IRF1, SNX20, and VAV1) were found to be closely related to survival. This novel immune subtyping system and immune landscape provide a new understanding of immunotherapy in uveal melanoma. The four prognostic genes can predict prognosis of uveal melanoma patients and contribute to new development of targeted drugs.
9627. Intermittent Leucine Deprivation Produces Long-lasting Improvement in Insulin Sensitivity by Increasing Hepatic Gcn2 Expression.
作者: Hanrui Yin.;Feixiang Yuan.;Fuxin Jiao.;Yuguo Niu.;Xiaoxue Jiang.;Jiali Deng.;Yajie Guo.;Shanghai Chen.;Qiwei Zhai.;Cheng Hu.;Yiming Li.;Feifan Guo.
来源: Diabetes. 2022年71卷2期206-218页
Leucine deprivation improves insulin sensitivity; however, whether and how this effect can be extended are unknown. We hypothesized that intermittent leucine deprivation (ILD) might produce a long-term effect on improved insulin sensitivity via the formation of metabolic memory. Consistently, seven ILD cycles of treatment (1-day leucine-deficient diet, 3-day control diet) in mice produced a long-lasting (after a control diet was resumed for 49 days) effect on improved whole-body and hepatic insulin sensitivity in mice, indicating the potential formation of metabolic memory. Furthermore, the effects of ILD depended on hepatic general control nondepressible 2 (GCN2) expression, as verified by gain- and loss-of-function experiments. Moreover, ILD increased Gcn2 expression by reducing its DNA methylation at two CpG promoter sites controlled by demethylase growth arrest and DNA damage inducible b. Finally, ILD also improved insulin sensitivity in insulin-resistant mice. Thus, ILD induces long-lasting improvements in insulin sensitivity by increasing hepatic Gcn2 expression via a reduction in its DNA methylation. These results provide novel insights into understanding of the link between leucine deprivation and insulin sensitivity, as well as potential nutritional intervention strategies for treating insulin resistance and related diseases. We also provide evidence for liver-specific metabolic memory after ILD and novel epigenetic mechanisms for Gcn2 regulation.
9628. A highly-specific fully-human antibody and CAR-T cells targeting CD66e/CEACAM5 are cytotoxic for CD66e-expressing cancer cells in vitro and in vivo.
作者: Du-San Baek.;Ye-Jin Kim.;Sandra Vergara.;Alex Conard.;Cynthia Adams.;Guillermo Calero.;Rieko Ishima.;John W Mellors.;Dimiter S Dimitrov.
来源: Cancer Lett. 2022年525卷97-107页
Neuro-endocrine prostate cancer (NEPC) accounts for about 20% of lethal metastatic castration-resistant prostate cancer (CRPC). NEPC has the most aggressive biologic behavior of all prostate cancers and is associated with poor patient outcome. Effective treatment for NEPC is not available because NEPC exhibit distinct cell-surface expression profiles compared to other types of prostate cancer. Recently, the carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) (known as CEA or CD66e) was suggested to be a specific surface protein marker for NEPC. Therefore, we identified a new, fully-human anti-CEACAM5 monoclonal antibody, 1G9, which bound to the most proximal membrane domains, A3 and B3, of CEACAM5 with high affinity and specificity. It shows no off-target binding to other CEACAM family members, membrane distal domains of CEACAM5, or 5800 human membrane proteins. IgG1 1G9 exhibited CEACAM5-specific ADCC activity toward CEACAM5-positive prostate cancer cells in vitro and in vivo. Chimeric antigen receptor T cells (CAR-T) based on scFv 1G9 induced specific and strong antitumor activity in a mouse model of prostate cancer. Our results suggest that IgG1 and CAR-T cells based on 1G9 are promising candidate therapeutics for CEACAM5-positive NEPC and other cancers.
9629. AZD3759 enhances radiation effects in non-small-cell lung cancer by a synergistic blockade of epidermal growth factor receptor and Janus kinase-1.
作者: Ruing Zhao.;Wei Yin.;Qingqing Yu.;Yanjiao Mao.;Qinghua Deng.;Ke Zhang.;Shenglin Ma.
来源: Bioengineered. 2022年13卷1期331-344页
AZD3759 is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) on the basis of gefitinib and has been proven to enter the central nervous system. Although the promising antitumor effects of AZD3759 on non-small cell lung cancer (NSCLC) have been demonstrated in clinical trials, the regulatory effects of this inhibitor on the antitumor efficacy of radiation (RA) are unclear. The present study aimed to compare the effects of AZD3759 and osimertinib on RA efficacy in NSCLC and explore the potential mechanism of action of AZD3759. We found that the survival in RA-treated NSCLC cells was significantly decreased by treatment with 500 nM AZD3759 and osimertinib at the RA dosage of 8 Gy. The apoptotic rate, cell cycle arrest, and DNA damage in RA-treated NSCLC cells and brain metastasis in RA-treated xenograft nude mice were significantly enhanced by the co-administration of AZD3759 and osimertinib, respectively. In addition, AZD3759 showed a significantly stronger efficacy than osimertinib did. Mechanistically, the receptor tyrosine kinase signaling antibody array revealed that Janus kinase-1 (JAK1) was specifically inhibited by AZD3759, but not by osimertinib. The effects of AZD3759 on RA efficacy in PC-9 cells and in a brain metastasis animal model were significantly abolished by the overexpression of JAK1. Collectively, our results suggested that AZD3759 promoted RA antitumor effects in NSCLC by synergistic blockade of EGFR and JAK1.
9630. Benchmark dose and the adverse effects of exposure to pendimethalin at low dose in female rats.
作者: Marwa F Gad.;Abdel-Tawab H Mossa.;Amel A Refaie.;Noha E Ibrahim.;Samia M M Mohafrash.
来源: Basic Clin Pharmacol Toxicol. 2022年130卷2期301-319页
Pendimethalin (PND) is a dinitroaniline herbicide widely used to control broadleaf and annual grasses. Although the acute oral toxicity of PND is >5 g/kg b.wt. in humans (LD50 for rats >5000 g/kg b.wt.), it has been classified as a possible human carcinogen. It is still used in agriculture so agricultural workers and their families, as well as consumers, can be exposed to this herbicide. The present study is the first report investigating the dose-response effect using the benchmark dose (BMD) and the adverse effects of exposure to PND at low dose via apoptosis responses linked to the expression of tumour necrosis factor-α (TNF-α), FAS and BAX proteins; oxidative stress; and DNA and liver damage in female rats. The rats were exposed to PND via drinking water at doses equivalent to no-observed-adverse-effect level (NOAEL = 100 mg/kg b.wt.), 200 and 400 mg/kg b.wt. for 28 days. PND caused the overexpression of TNF-α, FAS and BAX; increased the levels of serum liver biomarkers; and increased oxidative stress in the liver and erythrocytes. Furthermore, it induced DNA and liver damage in a dose-dependent manner. The BMD showed that serum alkaline phosphatase (ALP) and total antioxidant capacity (78.4 and 30.1 mg/kg b.wt./day, respectively), lipid peroxidation in liver tissue (30.9 mg/kg b.wt./day), catalase in erythrocytes (14.0 mg/kg b.wt./day) and FAS expression in liver tissue (6.89 mg/kg b.wt./day) were highly sensitive biomarkers of PND toxicity. Our findings suggest the generation of reactive oxygen species as a possible mechanism of PND-induced gene overexpression of tumour necrosis factor-α (TNF-α), FAS and BAX proteins, oxidative stress and DNA and liver damage in female rats.
9631. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways.
作者: Yue Shen.;Li Teng.;Yuhan Qu.;Jie Liu.;Xudong Zhu.;Shan Chen.;Longfei Yang.;Yuehui Huang.;Qin Song.;Qiang Fu.
来源: J Ethnopharmacol. 2022年284卷114791页
The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA).
9632. Physalin B ameliorates inflammatory responses in lipopolysaccharide-induced acute lung injury mice by inhibiting NF-κB and NLRP3 via the activation of the PI3K/Akt pathway.
作者: Renxing Zhong.;Tianyi Xia.;Yi Wang.;Zihe Ding.;Wei Li.;Ying Chen.;Mingming Peng.;Chuanqiu Li.;Han Zhang.;Zunpeng Shu.
来源: J Ethnopharmacol. 2022年284卷114777页
Physalin B (PB) is an active constituent of Physalis alkekengi L. var. Franchetii, which is a traditional medicine for clearing heat and detoxification, resolving phlegm, and diuresis. It has been commonly applied to treat sore throat, phlegm-heat, cough, dysuria, pemphigus, and eczema.
9633. Gastroprotective action of the ethanol extract of Leonurus sibiricus L. (Lamiaceae) in mice.
作者: Laiza S Biano.;Alan S Oliveira.;David N Palmeira.;Luis André Silva.;Ricardo L C de Albuquerque-Junior.;Marcelo C Duarte.;Cristiane B Correa.;Renata Grespan.;Josemar S Batista.;Enilton A Camargo.
来源: J Ethnopharmacol. 2022年284卷114792页
Leonurus sibiricus L. (Lamiaceae) is a medicinal plant known in Brazil as "rubim" or "erva de macaé". It is used for various purposes, including stomach disorders.
9634. Efficacy of Modified Huangqi Chifeng decoction in alleviating renal fibrosis in rats with IgA nephropathy by inhibiting the TGF-β1/Smad3 signaling pathway through exosome regulation.
作者: Mingming Zhao.;Bin Yang.;Liusheng Li.;Yuan Si.;Meiying Chang.;Sijia Ma.;Ronghai Li.;Yuejun Wang.;Yu Zhang.
来源: J Ethnopharmacol. 2022年285卷114795页
IgA nephropathy is the most common form of primary glomerulonephritis and is a major cause of renal failure worldwide. Modified Huangqi Chifeng decoction (MHCD), a traditional Chinese herbal preparation, has clinical efficacy in reducing the 24-h urine protein levels in patients with IgA nephropathy. However, the molecular mechanism of MHCD needs further study.
9635. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells.
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also, Na+-lactate as well as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 production, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.
9636. 2E-Decene-4,6-diyn-1-ol-acetate inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signalling pathways.
作者: Young Ran Park.;Xiang-Dong Su.;Saroj Kumar Shrestha.;Seo Young Yang.;Yunjo Soh.
来源: Clin Exp Pharmacol Physiol. 2022年49卷3期341-349页
An imbalance of osteoclasts and osteoblasts can result in a variety of bone-related diseases, including osteoporosis. Thus, decreasing the activity of osteoclastic bone resorption is the main therapeutic method for treating osteoporosis. 2E-Decene-4, 6-diyn-1-ol-acetate (DDA) is a natural bioactive compound with anti-inflammatory and anti-cancer properties. However, its effects on osteoclastogenesis are unknown. Murine bone marrow-derived macrophages (BMMs) or RAW264.7 cells were treated with DDA, followed by evaluation of cell viability, RANKL-induced osteoclast differentiation, and pit formation assay. Effects of DDA on RANKL-induced phosphorylation of MAPKs were assayed by western blot analysis. Expression of osteoclast-specific genes was examined with reverse transcription-PCR (RT-PCR) and western blot analysis. In this study, DDA significantly inhibited RANKL-induced osteoclast differentiation in RAW264.7 cells as well as in BMMs without cytotoxicity. DDA also strongly blocked the resorbing capacity of BMM on calcium phosphate-coated plates. DDA inhibited RANKL-induced phosphorylation of ERK, JNK and p38 MAPKs, as well as expression of c-Fos and NFATc1, which are essential transcription factors for osteoclastogenesis. In addition, DDA decreased expression levels of osteoclastogenesis-specific genes, including matrix metalloproteinase-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB (RANK) in RANKL-induced RAW264.7 cells. Collectively, these findings indicated that DDA attenuates RANKL-induced osteoclast formation by suppressing the MAPKs-c-Fos-NFATc1 signalling pathway and osteoclast-specific genes. These results indicate that DDA may be a potential candidate for bone diseases associated with abnormal osteoclast formation and function.
9637. Molecular and biological effects of Cisplatin in Drosophila.
作者: Daniela Moreira Mombach.;Tiago Minuzzi Freire da Fontoura Gomes.;Mônica Medeiros Silva.;Élgion Lúcio Silva Loreto.
来源: Comp Biochem Physiol C Toxicol Pharmacol. 2022年252卷109229页
Cisplatin is widely used in cancer treatment and is one of the best cytostatic agents available for antitumor therapy. Drosophila melanogaster has one of the best annotated genomes and one of the best characterized sets of transposable elements (TE) sequences. This model organism is useful for analyzing the mode of action of several compounds in vivo and evaluating the behavioral consequences of treatments. The aim of our study was to increase the knowledge about the effects of Cisplatin in Drosophila by joining RNA-seq and biological assays. RNA-seq was followed by analyses of differential expression of genes (DEGs) and TEs (DETEs), and of pathways and ontology terms. DETEs were confirmed by qPCR. Cisplatin was evaluated at 50 and 100 μg/mL in Drosophila culture medium for 24 h. The fly locomotor assay, survival analysis, oviposition and development were used as biological assays. Cisplatin induced DEGs in a dose-dependent fashion, and four TEs were up-regulated. Most DEGs are related to DNA damage and detoxification processes. Cisplatin increases Drosophila locomotor activity and interrupts development. Genes and processes related to the assays were also identified. This is the first study to evaluate the effects of Cisplatin in flies using RNA-seq. Gene alteration was almost limited to drug metabolism and DNA damage, and the drug did not vastly affect Drosophila on the molecular level. Contrary to the hypothesis that stress dramatically alters TEs mobilization, only four TEs were up-regulated. Our study, together with previous knowledge, asserts Drosophila as a valuable organism in the study of chemotherapy drugs.
9638. SZAP exerts analgesic effects on rheumatalgia in CIA rats by suppressing pain hyperalgesia and inhibiting TRPV1 and P2X3.
作者: Jie Wang.;Wen Wen.;Daoyin Gong.;Qi Chen.;Ping Li.;Panwang Liu.;Fushun Wang.;Shijun Xu.
来源: J Ethnopharmacol. 2022年284卷114780页
ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail.
9639. Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist.
作者: Abel Soto-Gamez.;Yizhou Wang.;Xinyu Zhou.;Lorina Seras.;Wim Quax.;Marco Demaria.
来源: Cancer Lett. 2022年525卷67-75页
Genotoxic agents are widely used anti-cancer therapies because of their ability to interfere with highly proliferative cells. An important outcome of these interventions is the induction of a state of permanent arrest also known as cellular senescence. However, senescent cancer cells are characterized by genomic instability and are at risk of escaping the growth arrest to eventually facilitate cancer relapse. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) signals extrinsic apoptosis via Death Receptors (DR) 4 and 5, while Decoy Receptors (DcR) 1 and 2, and Osteoprotegerin (OPG) are homologous to death receptors but incapable of transducing an apoptotic signal. The use of recombinant TRAIL as an anti-cancer strategy in combination with chemotherapy is currently in development, and a major question remains whether senescent cancer cells respond to TRAIL. Here, we show variable sensitivity of cancer cells to TRAIL after senescence induction, and upregulation of both pro-apoptotic and anti-apoptotic receptors in therapy-induced senescent cancer cells. A DR5-selective TRAIL variant (DHER), unable to bind to DcR1 or OPG, was more effective in inducing apoptosis of senescent cancer cells compared to wild-type TRAIL. Importantly, no apoptosis induction was observed in non-cancerous cells, even at the highest concentrations tested. Our results suggest that targeting DR5 can serve as a novel therapeutic strategy for the elimination of therapy-induced senescent cancer cells.
9640. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer.
作者: Shanyi Li.;Renyi Wu.;Lujing Wang.;Hsiao-Chen Dina Kuo.;Davit Sargsyan.;Xi Zheng.;Yujue Wang.;Xiaoyang Su.;Ah-Ng Kong.
来源: Mol Carcinog. 2022年61卷1期111-121页
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.
|