当前位置: 首页 >> 检索结果
共有 7344 条符合本次的查询结果, 用时 4.1294257 秒

7161. Efficacy of Modified Huangqi Chifeng decoction in alleviating renal fibrosis in rats with IgA nephropathy by inhibiting the TGF-β1/Smad3 signaling pathway through exosome regulation.

作者: Mingming Zhao.;Bin Yang.;Liusheng Li.;Yuan Si.;Meiying Chang.;Sijia Ma.;Ronghai Li.;Yuejun Wang.;Yu Zhang.
来源: J Ethnopharmacol. 2022年285卷114795页
IgA nephropathy is the most common form of primary glomerulonephritis and is a major cause of renal failure worldwide. Modified Huangqi Chifeng decoction (MHCD), a traditional Chinese herbal preparation, has clinical efficacy in reducing the 24-h urine protein levels in patients with IgA nephropathy. However, the molecular mechanism of MHCD needs further study.

7162. Lactic acid induces fibroblast growth factor 23 (FGF23) production in UMR106 osteoblast-like cells.

作者: Jana Alber.;Michael Föller.
来源: Mol Cell Biochem. 2022年477卷2期363-370页
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also, Na+-lactate as well as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 production, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.

7163. 2E-Decene-4,6-diyn-1-ol-acetate inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signalling pathways.

作者: Young Ran Park.;Xiang-Dong Su.;Saroj Kumar Shrestha.;Seo Young Yang.;Yunjo Soh.
来源: Clin Exp Pharmacol Physiol. 2022年49卷3期341-349页
An imbalance of osteoclasts and osteoblasts can result in a variety of bone-related diseases, including osteoporosis. Thus, decreasing the activity of osteoclastic bone resorption is the main therapeutic method for treating osteoporosis. 2E-Decene-4, 6-diyn-1-ol-acetate (DDA) is a natural bioactive compound with anti-inflammatory and anti-cancer properties. However, its effects on osteoclastogenesis are unknown. Murine bone marrow-derived macrophages (BMMs) or RAW264.7 cells were treated with DDA, followed by evaluation of cell viability, RANKL-induced osteoclast differentiation, and pit formation assay. Effects of DDA on RANKL-induced phosphorylation of MAPKs were assayed by western blot analysis. Expression of osteoclast-specific genes was examined with reverse transcription-PCR (RT-PCR) and western blot analysis. In this study, DDA significantly inhibited RANKL-induced osteoclast differentiation in RAW264.7 cells as well as in BMMs without cytotoxicity. DDA also strongly blocked the resorbing capacity of BMM on calcium phosphate-coated plates. DDA inhibited RANKL-induced phosphorylation of ERK, JNK and p38 MAPKs, as well as expression of c-Fos and NFATc1, which are essential transcription factors for osteoclastogenesis. In addition, DDA decreased expression levels of osteoclastogenesis-specific genes, including matrix metalloproteinase-9 (MMP-9), tartrate-resistant acid phosphatase (TRAP), and receptor activator of NF-κB (RANK) in RANKL-induced RAW264.7 cells. Collectively, these findings indicated that DDA attenuates RANKL-induced osteoclast formation by suppressing the MAPKs-c-Fos-NFATc1 signalling pathway and osteoclast-specific genes. These results indicate that DDA may be a potential candidate for bone diseases associated with abnormal osteoclast formation and function.

7164. Molecular and biological effects of Cisplatin in Drosophila.

作者: Daniela Moreira Mombach.;Tiago Minuzzi Freire da Fontoura Gomes.;Mônica Medeiros Silva.;Élgion Lúcio Silva Loreto.
来源: Comp Biochem Physiol C Toxicol Pharmacol. 2022年252卷109229页
Cisplatin is widely used in cancer treatment and is one of the best cytostatic agents available for antitumor therapy. Drosophila melanogaster has one of the best annotated genomes and one of the best characterized sets of transposable elements (TE) sequences. This model organism is useful for analyzing the mode of action of several compounds in vivo and evaluating the behavioral consequences of treatments. The aim of our study was to increase the knowledge about the effects of Cisplatin in Drosophila by joining RNA-seq and biological assays. RNA-seq was followed by analyses of differential expression of genes (DEGs) and TEs (DETEs), and of pathways and ontology terms. DETEs were confirmed by qPCR. Cisplatin was evaluated at 50 and 100 μg/mL in Drosophila culture medium for 24 h. The fly locomotor assay, survival analysis, oviposition and development were used as biological assays. Cisplatin induced DEGs in a dose-dependent fashion, and four TEs were up-regulated. Most DEGs are related to DNA damage and detoxification processes. Cisplatin increases Drosophila locomotor activity and interrupts development. Genes and processes related to the assays were also identified. This is the first study to evaluate the effects of Cisplatin in flies using RNA-seq. Gene alteration was almost limited to drug metabolism and DNA damage, and the drug did not vastly affect Drosophila on the molecular level. Contrary to the hypothesis that stress dramatically alters TEs mobilization, only four TEs were up-regulated. Our study, together with previous knowledge, asserts Drosophila as a valuable organism in the study of chemotherapy drugs.

7165. SZAP exerts analgesic effects on rheumatalgia in CIA rats by suppressing pain hyperalgesia and inhibiting TRPV1 and P2X3.

作者: Jie Wang.;Wen Wen.;Daoyin Gong.;Qi Chen.;Ping Li.;Panwang Liu.;Fushun Wang.;Shijun Xu.
来源: J Ethnopharmacol. 2022年284卷114780页
ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail.

7166. Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist.

作者: Abel Soto-Gamez.;Yizhou Wang.;Xinyu Zhou.;Lorina Seras.;Wim Quax.;Marco Demaria.
来源: Cancer Lett. 2022年525卷67-75页
Genotoxic agents are widely used anti-cancer therapies because of their ability to interfere with highly proliferative cells. An important outcome of these interventions is the induction of a state of permanent arrest also known as cellular senescence. However, senescent cancer cells are characterized by genomic instability and are at risk of escaping the growth arrest to eventually facilitate cancer relapse. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) signals extrinsic apoptosis via Death Receptors (DR) 4 and 5, while Decoy Receptors (DcR) 1 and 2, and Osteoprotegerin (OPG) are homologous to death receptors but incapable of transducing an apoptotic signal. The use of recombinant TRAIL as an anti-cancer strategy in combination with chemotherapy is currently in development, and a major question remains whether senescent cancer cells respond to TRAIL. Here, we show variable sensitivity of cancer cells to TRAIL after senescence induction, and upregulation of both pro-apoptotic and anti-apoptotic receptors in therapy-induced senescent cancer cells. A DR5-selective TRAIL variant (DHER), unable to bind to DcR1 or OPG, was more effective in inducing apoptosis of senescent cancer cells compared to wild-type TRAIL. Importantly, no apoptosis induction was observed in non-cancerous cells, even at the highest concentrations tested. Our results suggest that targeting DR5 can serve as a novel therapeutic strategy for the elimination of therapy-induced senescent cancer cells.

7167. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer.

作者: Shanyi Li.;Renyi Wu.;Lujing Wang.;Hsiao-Chen Dina Kuo.;Davit Sargsyan.;Xi Zheng.;Yujue Wang.;Xiaoyang Su.;Ah-Ng Kong.
来源: Mol Carcinog. 2022年61卷1期111-121页
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.

7168. CPI-203 improves the efficacy of anti-PD-1 therapy by inhibiting the induced PD-L1 overexpression in liver cancer.

作者: Xiaoge Niu.;Wei Wang.;Taizhen Liang.;Shasha Li.;Chan Yang.;Xinfeng Xu.;Lin Li.;Shuwen Liu.
来源: Cancer Sci. 2022年113卷1期28-40页
Hepatocellular carcinoma (HCC) is one of the commonest lethal malignancies worldwide, and often diagnosed at an advanced stage, without any curative therapy. Immune checkpoint blockers targeting the programmed death receptor 1 (PD-1) have shown impressive antitumor activity in patients with advanced-stage HCC, while the response rate is only 30%. Inducible PD-L1 overexpression may result in a lack of response to cancer immunotherapy, which is attributed to a mechanism of adaptive immune resistance. Our study investigated that the overexpression of PD-L1 promoted the invasion and migration of liver cancer cells in vitro, and the induced overexpression of PD-L1 in the tumor microenvironment could weaken the effects of anti-PD-1 immunotherapy in a BALB/c mouse model of liver cancer. CPI-203, a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor, which can potently inhibit PD-L1 expression in vitro and in vivo, combined with PD-1 antibody improved the response to immunotherapy in a liver cancer model. Cell transfection and chromatin immunoprecipitation assay manifested that BRD4 plays a key role in PD-L1 expression; CPI-203 can inhibit PD-L1 expression by inhibiting the BRD4 occupation of the PD-L1 promoter region. This study indicates a potential clinical immunotherapy method to reduce the incidence of clinical resistance to immunotherapy in patients with HCC.

7169. Intravenous immunoglobulin is effective in alleviating hepatic ischemia-reperfusion injury: a rat model study.

作者: Zeming Chen.;Runzhui Lin.;Hua Zhuo.;Fengjie Xu.;Xingmu Liu.
来源: Mol Biol Rep. 2022年49卷1期341-349页
Hepatic ischemia-reperfusion injury (I/R) is an important factor affecting the prognosis of patients undergoing liver surgery. This study aimed to explore the value of intravenous immunoglobulin (IVIG) in hepatic I/R and its mechanism in a rat model.

7170. Loss of GSTO2 contributes to cell growth and mitochondria function via the p38 signaling in lung squamous cell carcinoma.

作者: Ryusuke Sumiya.;Masayoshi Terayama.;Teruki Hagiwara.;Kazuaki Nakata.;Keigo Sekihara.;Satoshi Nagasaka.;Hideki Miyazaki.;Toru Igari.;Kazuhiko Yamada.;Yuki I Kawamura.
来源: Cancer Sci. 2022年113卷1期195-204页
Glutathione S-transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non-ciliated, columnar Clara cells, and type II alveolar cells, which have self-renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2-transfected cells formed smaller tumors in nude mice than mock-transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2-transfected cells than in those injected with mock-transfected cells. In addition, GSTO2 induction suppressed the expression of β-catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2-transfected cells displayed lower mitochondrial membrane potential than mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, β-catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β-catenin signaling pathway.

7171. Shifting of cell cycle arrest from the S-phase to G2/M phase and downregulation of EGFR expression by phytochemical combinations in HeLa cervical cancer cells.

作者: Sarita Pani.;Shubhasmita Mohapatra.;Amrita Sahoo.;Budhadev Baral.;Priya R Debata.
来源: J Biochem Mol Toxicol. 2022年36卷1期e22947页
Cervical cancer is a major human papillomavirus-related disease and is the fourth leading cause of death by cancer among women. Plants are an important source of anticancer compounds and many of them are currently used in the treatment of cancer. Several reports suggest the efficacy of plant-derived compounds increases when used in combination. This study was carried out to evaluate the effect of four plant-derived compounds such as curcumin (C), ellagic acid (E), quercetin (Q), and resveratrol (R) when used alone or in combinations using HeLa cervical cancer cells. All four phytocompounds showed effective cytotoxic activities in targeting HeLa cervical cancer cells as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay. The selected phytocompound combinations C + E, C + Q, and Q + R work synergistically while the combination C + R shows additive effects. All four phytocompounds reduce cell migration as determined by in vitro wound-healing assay. The expression level of the epidermal growth factor receptor is significantly downregulated both in individual and combination. The flow cytometry analysis of cell cycle indicates that individual drugs curcumin, ellagic acid, quercetin, and resveratrol, each with 20 µM effectively arrested cell cycle at the S-phase while the combination of drugs (10 + 10 µM) at the G2/M phase.

7172. Merkel cell polyomavirus-negative Merkel cell carcinoma is associated with JAK-STAT and MEK-ERK pathway activation.

作者: Takeshi Iwasaki.;Kazuhiko Hayashi.;Michiko Matsushita.;Daisuke Nonaka.;Kenichi Kohashi.;Satoshi Kuwamoto.;Yoshihisa Umekita.;Yoshinao Oda.
来源: Cancer Sci. 2022年113卷1期251-260页
Merkel cell polyomavirus (MCPyV) is monoclonally integrated into the genomes of approximately 80% of Merkel cell carcinomas (MCCs). While the presence of MCPyV affects the clinicopathological features of MCC, the molecular mechanisms of MCC pathogenesis after MCPyV infection are unclear. This study investigates the association between MCPyV infection and activation of the MEK-ERK and JAK-STAT signaling pathways in MCC to identify new molecular targets for MCC treatment. The clinicopathological characteristics of 30 MCPyV-positive and 20 MCPyV-negative MCC cases were analyzed. The phosphorylation status of MEK, ERK, JAK, and STAT was determined by immunohistochemical analysis. The activation status of the MEK-ERK and JAK-STAT pathways and the effects of a JAK inhibitor (ruxolitinib) was analyzed in MCC cell lines. Immunohistochemically, the expression of pJAK2 (P = .038) and pERK1/2 (P = .019) was significantly higher in MCPyV-negative than in MCPyV-positive MCCs. Male gender (hazard ratio [HR] 2.882, P = .039), older age (HR 1.137, P < .001), negative MCPyV status (HR 0.324, P = .013), and advanced cancer stage (HR 2.672, P = .041) were identified as unfavorable prognostic factors; however, the phosphorylation states of JAK2, STAT3, MEK1/2, and ERK1/2 were unrelated to the prognosis. The inhibition of cell proliferation by ruxolitinib was greater in MCPyV-negative MCC cell lines than in an MCPyV-positive MCC cell line. The expression of pERK1/2 and pMEK was higher in MCPyV-negative than in MCPyV-positive cell lines. These results suggest that activation of the JAK2 and MEK-ERK pathways was more prevalent in MCPyV-negative than in MCPyV-positive MCC and the JAK inhibitor ruxolitinib inhibited MEK-ERK pathway activation. Consequently, the JAK-STAT and MEK-ERK signaling pathways may be potential targets for MCPyV-negative MCC treatment.

7173. Biphasic effect of mechanical stress on lymphocyte activation.

作者: Mhd Yousuf Yassouf.;Xu Zhang.;Zisheng Huang.;Da Zhai.;Reiko Sekiya.;Tsuyoshi Kawabata.;Tao-Sheng Li.
来源: J Cell Physiol. 2022年237卷2期1521-1531页
Mechanical forces can modulate the immune response, mostly described as promoting the activation of immune cells, but the role and mechanism of pathological levels of mechanical stress in lymphocyte activation have not been focused on before. By an ex vivo experimental approach, we observed that mechanical stressing of murine spleen lymphocytes with 50 mmHg for 3 h induced the nuclear localization of NFAT1, increased C-Jun, and increased the expression of early activation marker CD69 in resting CD8+ cells. Interestingly, 50 mmHg mechanical stressing induced the nuclear localization of NFAT1; but conversely decreased C-Jun and inhibited the expression of CD69 in lymphocytes under lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin stimulation. Additionally, we observed similar changes trends when comparing RNA-seq data of hypertensive and normotensive COVID-19 patients. Our results indicate a biphasic effect of mechanical stress on lymphocyte activation, which provides insight into the variety of immune responses in pathologies involving elevated mechanical stress.

7174. Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa.

作者: Zhexian Liu.;Sarzana S Hossain.;Zayda Morales Moreira.;Cara H Haney.
来源: J Bacteriol. 2022年204卷1期e0029721页
Pseudomonas aeruginosa, an opportunistic bacterial pathogen, can synthesize and catabolize several small cationic molecules known as polyamines. In several clades of bacteria, polyamines regulate biofilm formation, a lifestyle-switching process that confers resistance to environmental stress. The polyamine putrescine and its biosynthetic precursors, l-arginine and agmatine, promote biofilm formation in Pseudomonas spp. However, it remains unclear whether the effect is a direct effect of polyamines or occurs through a metabolic derivative. Here, we used a genetic approach to demonstrate that putrescine accumulation, either through disruption of the spermidine biosynthesis pathway or the catabolic putrescine aminotransferase pathway, promoted biofilm formation in P. aeruginosa. Consistent with this observation, exogenous putrescine robustly induced biofilm formation in P. aeruginosa that was dependent on putrescine uptake and biosynthesis pathways. Additionally, we show that l-arginine, the biosynthetic precursor of putrescine, also promoted biofilm formation but did so by a mechanism independent of putrescine or agmatine conversion. We found that both putrescine and l-arginine induced a significant increase in the intracellular level of bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) (c-di-GMP), a bacterial second messenger widely found in Proteobacteria that upregulates biofilm formation. Collectively these data show that putrescine and its metabolic precursor, arginine, promote biofilm and c-di-GMP synthesis in P. aeruginosa. IMPORTANCE Biofilm formation allows bacteria to physically attach to a surface, confer tolerance to antimicrobial agents, and promote resistance to host immune responses. As a result, the regulation of biofilm formation is often crucial for bacterial pathogens to establish chronic infections. A primary mechanism of biofilm promotion in bacteria is the molecule c-di-GMP, which promotes biofilm formation. The level of c-di-GMP is tightly regulated by bacterial enzymes. In this study, we found that putrescine, a small molecule ubiquitously found in eukaryotic cells, robustly enhances P. aeruginosa biofilm and c-di-GMP. We propose that P. aeruginosa may sense putrescine as a host-associated signal that triggers a lifestyle switch that favors chronic infection.

7175. Dehydroevodiamine suppresses inflammatory responses in adjuvant-induced arthritis rats and human fibroblast-like synoviocytes.

作者: Yufang Dai.;Jiaoe Sheng.;Sanshan He.;Qingchao Wu.;Yunlong Wang.;Linchong Su.
来源: Bioengineered. 2022年13卷1期268-279页
Dehydroevodiamine (DHE) is an effective natural active substance extracted from Euodiae Fructus, which is a widely used herbal drug in traditional Chinese medicine. The focus of this study was to test the possibility of using DHE in the treatment of rheumatoid arthritis (RA) diseases. A rat model of adjuvant-induced arthritis (AIA) was generated using Complete Freund's Adjuvant (CFA). Body weight changes, arthritis scores, ankle pathology, tumor necrosis factor-alpha (TNF-α), interleukin-1β(IL-1β), interleukin-6 (IL-6), and interleukin-17 (IL-17) secretion, as well as matrix metalloproteinase (MMP) expression in joint tissue, were measured as indicators of viability of DHE medicated AIA rats. Human fibroblast-like synoviocytes (MH7A cells) were connected to check these impacts. The results confirmed that DHE administration had an excellent therapeutic impact on the AIA rat model, substantially relieving joint swelling, inhibiting synovial pannus hyperplasia, and decreasing joint scores. In addition, the serum enzyme-linked immunosorbent assay (ELISA) showed that DHE treatment reduced the expression of pro-inflammatory factors in AIA rats. The immunohistochemical results showed that DHE treatment could reduce the synthesis of MMPs such as matrix metalloproteinase-1(MMP-1) and matrix metalloproteinase-3 (MMP-3) in the ankle tissue of AIA rats. In vitro, DHE inhibited cell proliferation, mRNA transcription, protein synthesis of proinflammatory factors such as IL-1βand IL-6, and matrix metalloproteinases such as MMP-1 and MMP-3. Furthermore, DHE inhibited the phosphorylation levels of p38, JNK, and ERK proteins in TNF-α-treated MH7A cells.This work assessed the effect of DHE in AIA rats and revealed its mechanism in vitro.

7176. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats.

作者: Fatma Kubra Tombulturk.;Zeynep Gizem Todurga-Seven.;Onder Huseyinbas.;Sibel Ozyazgan.;Turgut Ulutin.;Gonul Kanigur-Sultuybek.
来源: Mol Biol Rep. 2022年49卷1期73-83页
Diabetic chronic wound, which is one of the diabetic complications caused by hyperglycemia, characterized by prolonged inflammation has become one of the most serious challenges in the clinic. Hyperglycemia during diabetes not only causes prolonged inflammation and delayed wound healing but also modulates the activation of nuclear factor-kappa B (NF-κB) and the expression of matrix metalloproteinases (MMPs). Although metformin is the oldest oral antihyperglycemic drug commonly used for treating type 2 diabetes, few studies have explored the molecular mechanism of its topical effect on wound healing. Therefore, we aimed to investigate the molecular effects of topical metformin application on delayed wound healing, which's common in diabetes.

7177. TRIB3 Is Highly Expressed in the Adipose Tissue of Obese Patients and Is Associated With Insulin Resistance.

作者: Seul Ki Lee.;Chan Yoon Park.;Jimin Kim.;Donguk Kim.;Han Choe.;Jong-Hyeok Kim.;Joon Pio Hong.;Yeon Ji Lee.;Yoonseok Heo.;Hye Soon Park.;Yeon Jin Jang.
来源: J Clin Endocrinol Metab. 2022年107卷3期e1057-e1073页
The upregulation of TRIB3 (Tribbles homolog 3), a stress-inducible gene encoding a pseudokinase, has been implicated in the development of insulin resistance in the skeletal muscle and liver of patients with obesity and type 2 diabetes. However, there is little information regarding TRIB3 expression in human adipose tissue.

7178. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin.

作者: Ana Cristina Colabardini.;Fang Wang.;Zhiqiang Dong.;Lakhansing Pardeshi.;Marina Campos Rocha.;Jonas Henrique Costa.;Thaila Fernanda Dos Reis.;Alec Brown.;Qais Z Jaber.;Micha Fridman.;Taicia Fill.;Antonis Rokas.;Iran Malavazi.;Koon Ho Wong.;Gustavo Henrique Goldman.
来源: Genetics. 2022年220卷1期
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.

7179. Synergistic upregulation of ADAMTS4 (aggrecanase-1) by cytokines and its suppression in knee osteoarthritic synovial fibroblasts.

作者: Mehmet Zeynel Cilek.;Susana de Vega.;Jun Shiozawa.;Chiho Yoshinaga.;Yuka Miyamae.;Miyuki Chijiiwa.;Satsuki Mochizuki.;Masatoshi Ito.;Haruka Kaneko.;Kazuo Kaneko.;Muneaki Ishijima.;Yasunori Okada.
来源: Lab Invest. 2022年102卷1期102-111页
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-β markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-β, or IL-1α, TNF-α and TGF-β. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-β-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-β-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-β was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-β in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.

7180. Dexmedetomidine Attenuates Hypoxia/Reoxygenation Injury of H9C2 Myocardial Cells by Upregulating miR-146a Expression via the MAPK Signal Pathway.

作者: Yi Chu.;Jiwei Teng.;Pin Feng.;Hui Liu.;Fangfang Wang.;Haiyan Wang.
来源: Pharmacology. 2022年107卷1-2期14-27页
Dexmedetomidine (Dex) and a number of miRNAs contribute to ischemia/reperfusion injury. We aimed to explore the role of Dex and miR-146a on myocardial cells injured by hypoxia/reoxygenation (H/R).
共有 7344 条符合本次的查询结果, 用时 4.1294257 秒