当前位置: 首页 >> 检索结果
共有 7734 条符合本次的查询结果, 用时 9.8145399 秒

7121. Belimumab Decreases Autophagy and Citrullination in Peripheral Blood Mononuclear Cells from Patients with Systemic Lupus Erythematosus.

作者: Tania Colasanti.;Francesca Romana Spinelli.;Cristiana Barbati.;Fulvia Ceccarelli.;Susanna Scarpa.;Marta Vomero.;Cristiano Alessandri.;Guido Valesini.;Fabrizio Conti.
来源: Cells. 2022年11卷2期
Belimumab (BLM) is a B lymphocyte stimulator (BLyS) inhibitor approved for the treatment of systemic lupus erythematosus (SLE). Autophagy is a cell survival mechanism involved in the pathogenesis of SLE. Citrullination is a post-translational modification catalyzed by peptidylarginine deiminase (PAD) enzymes. Autophagy and citrullination may generate neoepitopes, evoking an autoimmune response. No previous studies have investigated the connection of these processes, and how BLM could affect them, in SLE. Ex vivo autophagy and protein citrullination were analyzed by western blot in lysates from 26 SLE patients' PBMCs at baseline and after 2, 4, and 12 weeks of BLM administration, and from 16 healthy donors' PBMCs. Autophagic PBMCs were identified by the immunofluorescent detection of the autophagy-associated proteins LC3B (LC3 puncta) and LAMP-1. Autophagosome accumulation was evaluated in CD14- (PBLs) and CD14+ (monocytes) SLE cells. The presence of the BLyS receptors BAFF-R, BCMA, and TACI on SLE CD4+, CD8+ T cells and monocytes, as well as serum IL-18 levels, was also assessed. Following BLM administration, we observed a decrease in autophagy and citrullination, with a lowering of LC3-II, citrullinated vimentin, and PAD4 expression levels in PBMCs from SLE patients. LC3-II levels showed a correlation with the SLE Disease Activity Index 2000 (SLEDAI-2K) after 12 weeks of therapy. The LC3B/LAMP-1 analysis confirmed the reduction in autophagy. A lesser autophagosome accumulation occurred in PBLs and monocytes which, in turn, seemed to be the main cellular populations contributing to autophagy. A reduction in patients' serum IL-18 concentrations occurred. CD4+ and CD8+ cells weakly expressed BAFF receptors; monocytes expressed only BAFF-R. BLM could impact on autophagy and citrullination, offering an opportunity for a deeper understanding of these mechanisms in SLE, and a possible tool for the clinical management of SLE.

7122. Age-Dependent and Pathway-Specific Bimodal Action of Nicotine on Synaptic Plasticity in the Hippocampus of Mice Lacking the miR-132/212 Genes.

作者: Tamara Stojanovic.;David Velarde Gamez.;Gabor Jorrid Schuld.;Daniel Bormann.;Maureen Cabatic.;Pavel Uhrin.;Gert Lubec.;Francisco J Monje.
来源: Cells. 2022年11卷2期
Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.

7123. Identification of a Potent Cytotoxic Pyrazole with Anti-Breast Cancer Activity That Alters Multiple Pathways.

作者: Denisse A Gutierrez.;Lisett Contreras.;Paulina J Villanueva.;Edgar A Borrego.;Karla Morán-Santibañez.;Jessica D Hess.;Rebecca DeJesus.;Manuel Larragoity.;Ana P Betancourt.;Jonathon E Mohl.;Elisa Robles-Escajeda.;Khodeza Begum.;Sourav Roy.;Robert A Kirken.;Armando Varela-Ramirez.;Renato J Aguilera.
来源: Cells. 2022年11卷2期
In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.

7124. Human Sensory Neuron-like Cells and Glycated Collagen Matrix as a Model for the Screening of Analgesic Compounds.

作者: Michelle Cristiane Bufalo.;Maíra Estanislau Soares de Almeida.;José Ricardo Jensen.;Carlos DeOcesano-Pereira.;Flavio Lichtenstein.;Gisele Picolo.;Ana Marisa Chudzinski-Tavassi.;Sandra Coccuzzo Sampaio.;Yara Cury.;Vanessa Olzon Zambelli.
来源: Cells. 2022年11卷2期
Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (β-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.

7125. Consecutive-Day Ventricular and Atrial Cardiomyocyte Isolations from the Same Heart: Shifting the Cost-Benefit Balance of Cardiac Primary Cell Research.

作者: Joachim Greiner.;Teresa Schiatti.;Wenzel Kaltenbacher.;Marica Dente.;Alina Semenjakin.;Thomas Kok.;Dominik J Fiegle.;Thomas Seidel.;Ursula Ravens.;Peter Kohl.;Rémi Peyronnet.;Eva A Rog-Zielinska.
来源: Cells. 2022年11卷2期
Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart. However, due to progressive cell remodeling following isolation, freshly isolated primary CM need to be used within 4-8 h post-isolation for most functional assays, meaning that the majority of cells is essentially wasted. In addition, coronary perfusion-based isolation cannot easily be applied to human tissue biopsies, and it does not straightforwardly allow for assessment of regional differences in CM function within the same heart. Here, we provide a method of multi-day CM isolation from one animal heart, yielding calcium-tolerant ventricular and atrial CM. This is based on cell isolation from cardiac tissue slices following repeated (usually overnight) storage of the tissue under conditions that prolong CM viability beyond the day of organ excision by two additional days. The maintenance of cells in their near-native microenvironment slows the otherwise rapid structural and functional decline seen in isolated CM during attempts for prolonged storage or culture. Multi-day slice-based CM isolation increases the amount of useful information gained per animal heart, improving reproducibility and reducing the number of experimental animals required in basic cardiac research. It also opens the doors to novel experimental designs, including exploring same-heart regional differences.

7126. TFEB Regulates ATP7B Expression to Promote Platinum Chemoresistance in Human Ovarian Cancer Cells.

作者: Raffaella Petruzzelli.;Marta Mariniello.;Rossella De Cegli.;Federico Catalano.;Floriana Guida.;Elia Di Schiavi.;Roman S Polishchuk.
来源: Cells. 2022年11卷2期
ATP7B is a hepato-specific Golgi-located ATPase, which plays a key role in the regulation of copper (Cu) homeostasis and signaling. In response to elevated Cu levels, ATP7B traffics from the Golgi to endo-lysosomal structures, where it sequesters excess copper and further promotes its excretion to the bile at the apical surface of hepatocytes. In addition to liver, high ATP7B expression has been reported in tumors with elevated resistance to platinum (Pt)-based chemotherapy. Chemoresistance to Pt drugs represents the current major obstacle for the treatment of large cohorts of cancer patients. Although the mechanisms underlying Pt-tolerance are still ambiguous, accumulating evidence suggests that lysosomal sequestration of Pt drugs by ion transporters (including ATP7B) might significantly contribute to drug resistance development. In this context, signaling mechanisms regulating the expression of transporters such as ATP7B are of great importance. Considering this notion, we investigated whether ATP7B expression in Pt-resistant cells might be driven by transcription factor EB (TFEB), a master regulator of lysosomal gene transcription. Using resistant ovarian cancer IGROV-CP20 cells, we found that TFEB directly binds to the predicted coordinated lysosomal expression and regulation (CLEAR) sites in the proximal promoter and first intron region of ATP7B upon Pt exposure. This binding accelerates transcription of luciferase reporters containing ATP7B CLEAR regions, while suppression of TFEB inhibits ATP7B expression and stimulates cisplatin toxicity in resistant cells. Thus, these data have uncovered a Pt-dependent transcriptional mechanism that contributes to cancer chemoresistance and might be further explored for therapeutic purposes.

7127. Transient Exposure of Endothelial Cells to Doxorubicin Leads to Long-Lasting Vascular Endothelial Growth Factor Receptor 2 Downregulation.

作者: Silvia Graziani.;Luca Scorrano.;Giovanna Pontarin.
来源: Cells. 2022年11卷2期
Doxorubicin (Dox) is an effective antineoplastic drug with serious cardiotoxic side effects that persist after drug withdrawal and can lead to heart failure. Dysregulation of vascular endothelium has been linked to the development of Dox-induced cardiotoxicity, but it is unclear whether and how transient exposure to Dox leads to long-term downregulation of Endothelial Vascular Endothelial Growth Factor Receptor type2 (VEGFR2), essential for endothelial cells function. Using an in vitro model devised to study the long-lasting effects of brief endothelial cells exposure to Dox, we show that Dox leads to sustained protein synthesis inhibition and VEGFR2 downregulation. Transient Dox treatment led to the development of long-term senescence associated with a reduction in VEGFR2 levels that persisted days after drug withdrawal. By analyzing VEGFR2 turnover, we ruled out that its downregulation was depended on Dox-induced autophagy. Conversely, Dox induced p53 expression, reduced mTOR-dependent translation, and inhibited global protein synthesis. Our data contribute to a mechanistic basis to the permanent damage caused to endothelial cells by short-term Dox treatment.

7128. Native and Oxidized Low-Density Lipoproteins Increase the Expression of the LDL Receptor and the LOX-1 Receptor, Respectively, in Arterial Endothelial Cells.

作者: Rusan Catar.;Lei Chen.;Hongfan Zhao.;Dashan Wu.;Julian Kamhieh-Milz.;Christian Lücht.;Daniel Zickler.;Alexander W Krug.;Christian G Ziegler.;Henning Morawietz.;Janusz Witowski.
来源: Cells. 2022年11卷2期
Atherosclerotic artery disease is the major cause of death and an immense burden on healthcare systems worldwide. The formation of atherosclerotic plaques is promoted by high levels of low-density lipoproteins (LDL) in the blood, especially in the oxidized form. Circulating LDL is taken up by conventional and non-classical endothelial cell receptors and deposited in the vessel wall. The exact mechanism of LDL interaction with vascular endothelial cells is not fully understood. Moreover, it appears to depend on the type and location of the vessel affected and the receptor involved. Here, we analyze how native LDL (nLDL) and oxidized LDL (oxLDL) modulate the expression of their receptors-classical LDLR and alternative LOX-1-in endothelial cells derived from human umbilical artery (HUAECs), used as an example of a medium-sized vessel, which is typically affected by atherosclerosis. Exposure of HUAECs to nLDL resulted in moderate nLDL uptake and gradual increase in LDLR, but not LOX-1, expression over 24 h. Conversely, exposure of HUAECs to oxLDL, led to significant accumulation of oxLDL and rapid induction of LOX-1, but not LDLR, within 7 h. These activation processes were associated with phosphorylation of protein kinases ERK1/2 and p38, followed by activation of the transcription factor AP-1 and its binding to the promoters of the respective receptor genes. Both nLDL-induced LDLR mRNA expression and oxLDL-induced LOX-1 mRNA expression were abolished by blocking ERK1/2, p-38 or AP-1. In addition, oxLDL, but not nLDL, was capable of inducing LOX-1 through the NF-κB-controlled pathway. These observations indicate that in arterial endothelial cells nLDL and oxLDL signal mainly via LDLR and LOX-1 receptors, respectively, and engage ERK1/2 and p38 kinases, and AP-1, as well as NF-κB transcription factors to exert feed-forward regulation and increase the expression of these receptors, which may perpetuate endothelial dysfunction in atherosclerosis.

7129. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology.

作者: Maria R Pozo.;Gantt W Meredith.;Emilia Entcheva.
来源: Cells. 2022年11卷2期
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.

7130. Organophosphorus Flame Retardant TDCPP Displays Genotoxic and Carcinogenic Risks in Human Liver Cells.

作者: Quaiser Saquib.;Abdullah M Al-Salem.;Maqsood A Siddiqui.;Sabiha M Ansari.;Xiaowei Zhang.;Abdulaziz A Al-Khedhairy.
来源: Cells. 2022年11卷2期
Tris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and neutral red uptake (NRU) assays demonstrated survival reduction in HepG2 cells after 3 days of exposure at higher concentrations (100-400 μM) of TDCPP. Comet assay and flow cytometric cell cycle experiments showed DNA damage and apoptosis in HepG2 cells after 3 days of TDCPP exposure. TDCPP treatment incremented the intracellular reactive oxygen species (ROS), nitric oxide (NO), Ca2+ influx, and esterase level in exposed cells. HepG2 mitochondrial membrane potential (ΔΨm) significantly declined and cytoplasmic localization of P53, caspase 3, and caspase 9 increased after TDCPP exposure. qPCR array quantification of the human cancer pathway revealed the upregulation of 11 genes and downregulation of two genes in TDCPP-exposed HepG2 cells. Overall, this is the first study to explicitly validate the fact that TDCPP bears the genotoxic, hepatotoxic, and carcinogenic potential, which may jeopardize human health.

7131. Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes.

作者: Aya Al Katat.;Juan Zhao.;Angelino Calderone.;Lucie Parent.
来源: Cells. 2022年11卷2期
Intracellular Ca2+ overload secondary to chronic hemodynamic stimuli promotes the recruitment of Ca2+-dependent signaling implicated in cardiomyocyte hypertrophy. The present study tested the hypothesis that sympathetic-mediated hypertrophy of neonatal rat ventricular cardiomyocytes (NRVMs) translated to an increase in calcium influx secondary to the upregulation of CaV1.2 channel subunits. Confocal imaging of norepinephrine (NE)-treated NRVMs revealed a hypertrophic response compared to untreated NRVMs. L-type CaV1.2 peak current density was increased 4-fold following a 24-h stimulation with NE. NE-treated NRVMs exhibited a significant upregulation of CaVα2δ1 and CaVβ3 protein levels without significant changes of CaVα1C and CaVβ2 protein levels. Pre-treatment with the β1-blocker metoprolol failed to inhibit hypertrophy or CaVβ3 upregulation whereas CaVα2δ1 protein levels were significantly reduced. NE promoted the phosphorylation of ERK 1/2, and the response was attenuated by the β1-blocker. U0126 pre-treatment suppressed NE-induced ERK1/2 phosphorylation but failed to attenuate hypertrophy. U0126 inhibition of ERK1/2 phosphorylation prevented NE-mediated upregulation of CaVα2δ1, whereas CaVβ3 protein levels remained elevated. Thus, β1-adrenergic receptor-mediated recruitment of the ERK1/2 plays a seminal role in the upregulation of CaVα2δ1 in NRVMs independent of the concomitant hypertrophic response. However, the upregulation of CaVβ3 protein levels may be directly dependent on the hypertrophic response of NRVMs.

7132. Gene Network of Susceptibility to Atypical Femoral Fractures Related to Bisphosphonate Treatment.

作者: Natalia Garcia-Giralt.;Neus Roca-Ayats.;Josep F Abril.;Nuria Martinez-Gil.;Diana Ovejero.;Santos Castañeda.;Xavier Nogues.;Daniel Grinberg.;Susanna Balcells.;Raquel Rabionet.
来源: Genes (Basel). 2022年13卷1期
Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication.

7133. Genome-Wide Analysis in Drosophila Reveals the Genetic Basis of Variation in Age-Specific Physical Performance and Response to ACE Inhibition.

作者: Mariann M Gabrawy.;Nick Khosravian.;George S Morcos.;Tatiana V Morozova.;Meagan Jezek.;Jeremy D Walston.;Wen Huang.;Peter M Abadir.;Jeff Leips.
来源: Genes (Basel). 2022年13卷1期
Despite impressive results in restoring physical performance in rodent models, treatment with renin-angiotensin system (RAS) inhibitors, such as Lisinopril, have highly mixed results in humans, likely, in part, due to genetic variation in human populations. To date, the genetic determinants of responses to drugs, such as RAS inhibitors, remain unknown. Given the complexity of the relationship between physical traits and genetic background, genomic studies which predict genotype- and age-specific responses to drug treatments in humans or vertebrate animals are difficult. Here, using 126 genetically distinct lines of Drosophila melanogaster, we tested the effects of Lisinopril on age-specific climbing speed and endurance. Our data show that functional response and sensitivity to Lisinopril treatment ranges from significant protection against physical decline to increased weakness depending on genotype and age. Furthermore, genome-wide analyses led to identification of evolutionarily conserved genes in the WNT signaling pathway as being significantly associated with variations in physical performance traits and sensitivity to Lisinopril treatment. Genetic knockdown of genes in the WNT signaling pathway, Axin, frizzled, nemo, and wingless, diminished or abolished the effects of Lisinopril treatment on climbing speed traits. Our results implicate these genes as contributors to the genotype- and age-specific effects of Lisinopril treatment and because they have orthologs in humans, they are potential therapeutic targets for improvement of resiliency. Our approach should be widely applicable for identifying genomic variants that predict age- and sex-dependent responses to any type of pharmaceutical treatment.

7134. Expression of Fibroblast Activation Protein Is Enriched in Neuroendocrine Prostate Cancer and Predicts Worse Survival.

作者: Panagiotis J Vlachostergios.;Athanasios Karathanasis.;Vassilios Tzortzis.
来源: Genes (Basel). 2022年13卷1期
Advanced prostate cancer (PC) may accumulate genomic alterations that hallmark lineage plasticity and transdifferentiation to a neuroendocrine (NE) phenotype. Fibroblast activation protein (FAP) is a key player in epithelial-to-mesenchymal transition (EMT). However, its clinical value and role in NE differentiation in advanced PC has not been fully investigated.

7135. CDX2 controls genes involved in the metabolism of 5-fluorouracil and is associated with reduced efficacy of chemotherapy in colorectal cancer.

作者: Jean-Baptiste Delhorme.;Emilie Bersuder.;Chloé Terciolo.;Ourania Vlami.;Marie-Pierrette Chenard.;Elisabeth Martin.;Serge Rohr.;Cécile Brigand.;Isabelle Duluc.;Jean-Noël Freund.;Isabelle Gross.
来源: Biomed Pharmacother. 2022年147卷112630页
Most patients affected with colorectal cancers (CRC) are treated with 5-fluorouracil (5-FU)-based chemotherapy but its efficacy is often hampered by resistance mechanisms linked to tumor heterogeneity. A better understanding of the molecular determinants involved in chemoresistance is critical for precision medicine and therapeutic progress. Caudal type homeobox 2 (CDX2) is a master regulator of intestinal identity and acts as tumor suppressor in the colon. Here, using a translational approach, we examined the role of CDX2 in CRC chemoresistance. Unexpectedly, we discovered that the prognosis value of CDX2 for disease-free survival of patients affected with CRC is lost upon chemotherapy and that CDX2 expression enhances resistance of colon cancer cells towards 5-FU. At the molecular level, we found that CDX2 expression correlates with higher levels of genes regulating the bioavailability of 5-FU through efflux (ABCC11) and catabolism (DPYD) in patients affected with CRC and CRC cell lines. We further showed that CDX2 directly regulates the expression of ABCC11 and that the inhibition of ABCC11 improves 5-FU-sensitivity of CDX2-expressing colon cancer cells. Thus, this study illustrates how biological functions are hijacked in CRC cells and reveals the therapeutic interest of CDX2/ABCC11/DPYD to improve systemic chemotherapy in CRC.

7136. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses.

作者: Long Chi Nguyen.;Dongbo Yang.;Vlad Nicolaescu.;Thomas J Best.;Haley Gula.;Divyasha Saxena.;Jon D Gabbard.;Shao-Nong Chen.;Takashi Ohtsuki.;John Brent Friesen.;Nir Drayman.;Adil Mohamed.;Christopher Dann.;Diane Silva.;Lydia Robinson-Mailman.;Andrea Valdespino.;Letícia Stock.;Eva Suárez.;Krysten A Jones.;Saara-Anne Azizi.;Jennifer K Demarco.;William E Severson.;Charles D Anderson.;James Michael Millis.;Bryan C Dickinson.;Savaş Tay.;Scott A Oakes.;Guido F Pauli.;Kenneth E Palmer.; .;David O Meltzer.;Glenn Randall.;Marsha Rich Rosner.
来源: Sci Adv. 2022年8卷8期eabi6110页
The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.

7137. Differential effect of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on slow and fast skeletal muscles from nondiabetic mice.

作者: Hiroko Otsuka.;Hisashi Yokomizo.;Shintaro Nakamura.;Yoshihiro Izumi.;Masatomo Takahashi.;Sachiko Obara.;Motonao Nakao.;Yosuke Ikeda.;Naoichi Sato.;Ryuichi Sakamoto.;Yasutaka Miyachi.;Takashi Miyazawa.;Takeshi Bamba.;Yoshihiro Ogawa.
来源: Biochem J. 2022年479卷3期425-444页
There has been a concern that sodium-glucose cotransporter 2 (SGLT2) inhibitors could reduce skeletal muscle mass and function. Here, we examine the effect of canagliflozin (CANA), an SGLT2 inhibitor, on slow and fast muscles from nondiabetic C57BL/6J mice. In this study, mice were fed with or without CANA under ad libitum feeding, and then evaluated for metabolic valuables as well as slow and fast muscle mass and function. We also examined the effect of CANA on gene expressions and metabolites in slow and fast muscles. During SGLT2 inhibition, fast muscle function is increased, as accompanied by increased food intake, whereas slow muscle function is unaffected, although slow and fast muscle mass is maintained. When the amount of food in CANA-treated mice is adjusted to that in vehicle-treated mice, fast muscle mass and function are reduced, but slow muscle was unaffected during SGLT2 inhibition. In metabolome analysis, glycolytic metabolites and ATP are increased in fast muscle, whereas glycolytic metabolites are reduced but ATP is maintained in slow muscle during SGLT2 inhibition. Amino acids and free fatty acids are increased in slow muscle, but unchanged in fast muscle during SGLT2 inhibition. The metabolic effects on slow and fast muscles are exaggerated when food intake is restricted. This study demonstrates the differential effects of an SGLT2 inhibitor on slow and fast muscles independent of impaired glucose metabolism, thereby providing new insights into how they should be used in patients with diabetes, who are at a high risk of sarcopenia.

7138. Prothioconazole induces cell cycle arrest by up-regulation of EIF4EBP1 in extravillous trophoblast cells.

作者: Guangzhu Dong.;Rui Zhang.;Qi Hu.;Elizabeth M Martin.;Yufeng Qin.;Chuncheng Lu.;Yankai Xia.;Xinru Wang.;Guizhen Du.
来源: Arch Toxicol. 2022年96卷2期559-570页
Prothioconazole (PTC) is a new broad-spectrum triazole antibacterial agent that is being widely used in agriculture. PTC has been linked to a number of reproductive outcomes including embryo implantation disorder; however, the exact mechanism underlying this relationship has yet to be determined. Proper trophoblast proliferation and migration is a prerequisite for successful embryo implantation. To elucidate the underlying molecular perturbations, we detect the effect of PTC on extravillous trophoblast cells proliferation and migration, and investigate its potential mechanisms. Exposure to different concentrations of PTC (0-500 μM) significantly inhibited the cell viability and migration ability (5 μM PTC exposure), and also caused the cell cycle arrest at the lowest dose (1 μM PTC exposure). Transcriptome analysis revealed that PTC exposure disturbed multiple biological processes including cell cycle and apoptosis, consistent with cell phenotype. Specifically, eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1, 4E-BP1) was identified as up-regulated in PTC exposure group and knockdown of EIF4EBP1, and attenuated the G1 phase arrest induced by PTC exposure. In summary, our data demonstrated that 4E-BP1 participated in PTC-induced cell cycle arrest in extravillous trophoblast cells by regulating cyclin D1. These findings shed light on the potential adverse effect of PTC exposure on the embryo implantation.

7139. Heme Oxygenase-1 Inhibits the Proliferation of Hepatic Stellate Cells by Activating PPARγ and Suppressing NF-κB.

作者: Hui Yang.;Li Zhang.;Jie Chen.;Xiaoqian Zhang.;Zhongfu Zhao.;Longfeng Zhao.
来源: Comput Math Methods Med. 2022年2022卷8920861页
Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1.

7140. Nitrogen application and differences in leaf number retained after topping affect the tobacco (Nicotiana tabacum) transcriptome and metabolome.

作者: Bo Lei.;Wei Chang.;Huina Zhao.;Kai Zhang.;Jing Yu.;Shizhou Yu.;Kai Cai.;Jie Zhang.;Kun Lu.
来源: BMC Plant Biol. 2022年22卷1期38页
Agronomic treatments such as the application of nitrogen fertilizer and topping (removal of the inflorescence and top leaves) cause substantial changes in plant metabolism. To explore these changes, we conducted comparative transcriptomic and metabolomic analyses of leaves collected from four positions along the stem on plants exposed to two nitrogen doses and with different numbers of leaves retained after topping in tobacco (Nicotiana tabacum).
共有 7734 条符合本次的查询结果, 用时 9.8145399 秒