6981. The Role of Ferroptosis Signature in Overall Survival and Chemotherapy of Pancreatic Adenocarcinoma.
作者: Wanhui Wei.;Qian Hu.;Wenjie Li.;Mengting Li.;Shouquan Dong.;Yanan Peng.;Jingwen Yin.;Yuanyuan Lu.;Lan Liu.;Qiu Zhao.
来源: DNA Cell Biol. 2022年41卷2期116-127页
Studies have shown that ferroptosis, an iron-dependent regulated cell death, is related to prognosis and chemotherapy, but the role of ferroptosis in pancreatic adenocarcinoma (PAAD) is still unclear. We aimed at constructing a ferroptosis-related gene (FRGs) model to predict the PAAD patients' overall survival (OS) and at exploring their values in chemotherapy. We downloaded the mRNA-sequencing data and corresponding clinical data of patients with PAAD from The Cancer Genome Atlas. Lasso-penalized Cox regression analysis was utilized to construct a prognostic risk model, including spermidine/spermine N1-acetyltransferase 1 (SAT1), SAT2, TFRC, SLC39A8, MAP1LC3A, ALOX15, and PROM2. Receiver operating characteristic curves were used to evaluate the prognostic model. International Cancer Genome Consortium cohorts were used to validate this model. Then, we used Genomics of Drug Sensitivity in Cancer and Gene Expression Omnibus databases to analyze the correlation between FRGs and drug sensitivity. Notably, SAT1 showed significant influence in cisplatin and gemcitabine resistance. Finally, in vitro experiments demonstrated that the combination of gemcitabine and cisplatin could induce ferroptosis in AsPC1 cells, probably through elevated SAT1 expression. Taken together, Our 7-gene signature has significant values in predicting the PAAD patients' OS, and it may help inform the clinical treatment of PAAD.
6982. Tannin extract from maritime pine bark exhibits anticancer properties by targeting the epigenetic UHRF1/DNMT1 tandem leading to the re-expression of TP73.
作者: Waseem Ashraf.;Tanveer Ahmad.;Naif A R Almalki.;Mounira Krifa.;Liliyana Zaayter.;Antonio Pizzi.;Christian D Muller.;Ali Hamiche.;Yves Mély.;Christian Bronner.;Marc Mousli.
来源: Food Funct. 2022年13卷1期316-326页
Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.
6983. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8.
作者: Ying Li.;Sisi Chen.;Jianyu Zhu.;Chanjuan Zheng.;Muyao Wu.;Lian Xue.;Guangchun He.;Shujun Fu.;Xiyun Deng.
来源: Biochem Biophys Res Commun. 2022年589卷85-91页
Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.
6984. Boosting effect of testosterone on GDNF expression in Sertoli cell line (TM4); comparison between TM3 cells-produced and exogenous testosterone.
作者: Himasadat Zaker.;Mazdak Razi.;Alireza Mahmoudian.;Farhad Soltanalinejad.
来源: Gene. 2022年812卷146112页
The Glial cell-derived neurotrophic factor (Gdnf) and testosterone induce the spermatogonial stem cells (SSCs) self-renewal and spermatogenesis, respectively. In present study the stimulating role of testosterone on Sertoli cells to produce Gdnf, and the possible effect of Gdnf on Gfrα1 and c-RET expressions were investigated. The TM4 cells (line Sertoli cells) were co-cultured with [0.1, 0.2 and 0.4 (ng/ml)] of exogenous and TM3 (line Leydig cells)-produced testosterones, and consequently the TM4-produced Gdnf concentration was evaluated. Next, the SSCs were co-cultured with the TM-4 derived media (endogenous Gdnf) and exogenous Gdnf [0.1, 0.2, and 0.4 ng/ml)]. The 0.1 and 0.2 ng/ml endogenous and 3 concentrations of exogenous testosterone up-regulated the Gdnf expression versus non-treated Sertoli cells. The TM4-produced and exogenous Gdnfs, in all concentrations, up-regulated the receptors expression. In conclusion, the testosterone, solely, stimulates the Gdnf synthesis and the Gdnf, individually, amplifies its receptor's expression at mRNA and protein levels.
6985. Development of KVO treatment strategies for chronic pain in a rat model of Gulf War Illness.
We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 μM) and/or Diclofenac (50-140 μM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 μM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 μM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 μM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 μM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.
6986. Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways.
作者: Souvik Roy.;Anil Kumar Mondru.;Tania Chakraborty.;Abhijit Das.;Sandipan Dasgupta.
来源: Toxicol Appl Pharmacol. 2022年434卷115822页
Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.
6987. Alisertib shows negligible potential for perpetrating pharmacokinetic drug-drug interactions on ABCB1, ABCG2 and cytochromes P450, but acts as dual-activity resistance modulator through the inhibition of ABCC1 transporter.
作者: Dimitrios Vagiannis.;Yu Zhang.;Youssif Budagaga.;Eva Novotna.;Adam Skarka.;Sarah Kammerer.;Jan-Heiner Küpper.;Jakub Hofman.
来源: Toxicol Appl Pharmacol. 2022年434卷115823页
Alisertib (MLN8237), a novel Aurora A kinase inhibitor, is currently being clinically tested in late-phase trials for the therapy of various malignancies. In the present work, we describe alisertib's potential to perpetrate pharmacokinetic drug-drug interactions (DDIs) and/or to act as an antagonist of multidrug resistance (MDR). In accumulation assays, alisertib potently inhibited ABCC1 transporter, but not ABCB1 or ABCG2. The results of molecular modeling suggested a bifunctional mechanism for interaction on ABCC1. In addition, alisertib was characterized as a low- to moderate-affinity inhibitor of recombinant CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 isoenzymes, but without potential clinical relevance. Drug combination studies revealed the capability of alisertib to synergistically antagonize ABCC1-mediated resistance to daunorubicin. Although alisertib exhibited substrate characteristics toward ABCB1 transporter in monolayer transport assays, comparative proliferation studies showed lack of its MDR-victim behavior in cells overexpressing ABCB1 as well as ABCG2 and ABCC1. Lastly, alisertib did not affect the expression of ABCC1, ABCG2, ABCB1 transporters and CYP1A2, CYP3A4, CYP2B6 isozymes on mRNA level in various systemic and tumoral models. In conclusion, our study suggests that alisertib is a drug candidate with negligible potential for perpetrating systemic pharmacokinetic DDIs on ABCB1, ABCG2 and cytochromes P450. In addition, we introduce alisertib as an effective dual-activity chemosensitizer whose MDR-antagonistic capacities are not impaired by efflux or effect on MDR phenotype. Our in vitro findings provide important pieces of information for clinicians when introducing alisertib into the clinical area.
6988. Curcumin alleviates arsenic-induced injury in duck skeletal muscle via regulating the PINK1/Parkin pathway and protecting mitochondrial function.
作者: Juan Lan.;Lixuan Tang.;Shaofeng Wu.;Riming Huang.;Gaolong Zhong.;Xuanxuan Jiang.;Zhaoxin Tang.;Lianmei Hu.
来源: Toxicol Appl Pharmacol. 2022年434卷115820页
Arsenic is a well-known environmental pollutant due to its toxicity, which can do harm to animals and human. Curcumin is a polyphenolic compound derived from turmeric, commonly accepted to have antioxidant properties. However, whether curcumin can ameliorate the damage caused by arsenic trioxide (ATO) in duck skeletal muscle remains largely unknown. Therefore, the present study aims to investigate the potential molecular mechanism of curcumin against ATO-induced skeletal muscle injury. The results showed that treating with curcumin could attenuate body weight loss induced by ATO and reduced arsenic content accumulation in the skeletal muscle of duck. Curcumin was also able to alleviated the oxidative stress triggered by ATO, which was manifested by the increase of T-AOC and SOD, and MDA decrease. Moreover, we observed that curcumin could ease mitochondrial damage and vacuolate degeneration of nucleus. Our further investigation found that ATO disrupted normal mitochondrial fission/fusion (Drp1, OPA1, Mfn1/2) and restrained mitochondrial biogenesis (PGC-1α, Nrf1/2, TFAM), while curcumin could promote mitochondrial fusion and activated PGC-1α pathway. Furthermore, curcumin was found that it could not only reduce the mRNA and protein levels of mitophagy (PINK1, Parkin, LC3, p62) and pro-apoptotic genes (p53, Bax, Caspase-3, Cytc), but also increased the levels of anti-apoptotic genes (Bcl-2). In conclusion, curcumin was able to alleviate ATO-induced skeletal muscle damage by improving mitophagy and preserving mitochondrial function, which can serve as a novel strategy to take precautions against ATO toxicity.
6989. Simvastatin mitigates streptozotocin-induced type 1 diabetes in mice through downregulation of ADAM10 and ADAM17.
作者: Mohamed Sadek Abdel-Bakky.;Abdulmajeed Alqasoumi.;Waleed Mohammad Altowayan.;Elham Amin.;Mostafa Assem Darwish.
来源: Life Sci. 2022年289卷120224页
T cell mediates immune response in type 1 diabetes mellitus (T1DM) through its trafficking into pancreatic islets. The role of A Disintigrin And Metalloproteinase 10 (ADAM10) and 17 (ADAM17) in pancreatic T-cells recruitment into the pancreatic islets during T1DM is not known.
6990. Sodium butyrate attenuates rotenone-induced toxicity by activation of autophagy through epigenetically regulating PGC-1α expression in PC12 cells.
作者: Yi Zhang.;Shaoqing Xu.;Yiwei Qian.;Xiaoqin He.;Chengjun Mo.;Xiaodong Yang.;Qin Xiao.
来源: Brain Res. 2022年1776卷147749页
Short-chain fatty acids (SCFAs) are considered the key molecular link between gut microbiota and pathogenesis of Parkinson's disease (PD). However, the role of SCFAs in PD pathogenesis is controversial. Autophagy is important for the degradation of α-synuclein, which is critical to the development of PD. However, whether SCFAs can regulate autophagy in PD remains unknown. We aimed to investigate the role of SCFAs and explore the potential mechanisms in rat dopaminergic PC12 cells treated with rotenone. Expression levels of α-synuclein, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and microtubule-associated protein 1 light chain 3 beta (LC3B)-II were detected by Western blot. Histone acetylation levels at PGC-1α promoter region were measured using chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR). Among the three SCFAs, sodium butyrate (NaB) protected against rotenone-induced toxicity. NaB activated autophagy pathway and reduced rotenone-induced α-synuclein expression through the activation of autophagy. Notably, NaB activated autophagy pathway through upregulating PGC-1α expression. More importantly, NaB promoted the levels of histone 3 lysine 9 acetylation (H3K9Ac) and histone 3 lysine 27 acetylation (H3K27Ac) at PGC-1α promoter region, indicating that NaB promotes PGC-1α expression via histone acetylation modification. In conclusion, NaB can protect against rotenone-induced toxicity through activation of the autophagy pathway by upregulating PGC-1α expression via epigenetic modification.
6991. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade.
作者: Ye Yang.;Chunlei Wang.;Hong Shen.;Hongliang Fan.;Jing Liu.;Nanxiang Wu.
来源: Environ Toxicol Pharmacol. 2022年89卷103784页
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
6992. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes.
作者: Ting Zhao.;Yuchao Guo.;Hongchen Ji.;Guanghua Mao.;Weiwei Feng.;Yao Chen.;Xiangyang Wu.;Liuqing Yang.
来源: Toxicol Lett. 2022年356卷41-53页
Diabetes mellitus is a common endocrine metabolic disorder, and previous studies have shown that diabetics are more sensitive to the toxic environmental contaminants. Acrylamide (ACR) is both an industrially multipurpose compound and a common endogenous food contaminant to which people are frequently exposed and at high risk. However, the toxicity of ACR on diabetes hasn't attracted much attention. In this study, both healthy mice and diabetic mice received ACR administration orally to investigate the ACR-induced metabolic toxicity, mechanism and susceptibility to ACR toxicity in adult diabetic male mice. The results showed that ACR significantly increased FBG level and decreased bodyweight, serum lipid and liver lipid biomarkers (TC, TG, LDL-C, HDL-C) levels as well as expression of lipid and glucose metabolism-related genes in diabetic mice, indicating that ACR can exacerbate metabolic disorders of glucose and lipid in diabetic male mice. Moreover, ACR exposure significantly increased levels of MDA and COX-2), decreased GSH level and antioxidant enzyme activity (SOD, GSH-PX and CAT) by downregulating expression of Nrf2 and Keap1 in diabetic mice. Factorial analysis showed ACR had a more significant disturbance in diabetic mice compared with healthy mice. Our results indicated that ACR exposure can cause oxidative stress and inflammatory damage, which can exacerbate abnormal glucose and lipid metabolism. This work helps to elucidate the effects and underlying mechanisms of ACR-induced metabolic toxicity in adults with diabetes.
6993. Tokishakuyakusan ameliorates lowered body temperature after immersion in cold water through the early recovery of blood flow in rats.
作者: Tomofumi Shimizu.;Kiyoshi Terawaki.;Kyoji Sekiguchi.;Sho Sanechika.;Katsuya Ohbuchi.;Chinami Matsumoto.;Yoshiki Ikeda.
来源: J Ethnopharmacol. 2022年285卷114896页
'Cold feeling' is a subjective feeling of unusual coldness that aggravates fatigue, stiffness, and other symptoms, thereby reducing quality of life. Tokishakuyakusan (TSS) is a Kampo medicine reported to improve cold feeling and is used to treat symptoms aggravated by cold feeling. However, the mechanism of action of TSS is unclear. Cold feeling may involve reduced blood flow and subsequent inhibition of heat transport. Therefore, elucidating the effects of TSS on blood flow is one of the most important research topics for clarifying the mechanism of action of TSS.
6994. TGF-β/Smad signaling pathway plays a crucial role in patulin-induced pro-fibrotic changes in rat kidney via modulation of slug and snail expression.
作者: Saurabh Pal.;Neha Singh.;Indra Dev.;Vineeta Sharma.;Pankaj Ramji Jagdale.;Anjaneya Ayanur.;Kausar Mahmood Ansari.
来源: Toxicol Appl Pharmacol. 2022年434卷115819页
Patulin (PAT) is a mycotoxin that contaminates a variety of food and foodstuffs. Earlier in vitro and in vivo findings have indicated that kidney is one of the target organs for PAT-induced toxicity. However, no study has evaluated the chronic effects of PAT exposure at environmentally relevant doses or elucidated the detailed mechanism(s) involved. Here, using in vitro and in vivo experimental approaches, we delineated the mechanism/s involved in pro-fibrotic changes in the kidney after low-dose chronic exposure to PAT. We found that non-toxic concentrations (50 nM and 100 nM) of PAT to normal rat kidney cells (NRK52E) caused a higher generation of reactive oxygen species (ROS) (mainly hydroxyl (•OH), peroxynitrite (ONOO-), and hypochlorite radical (ClO-). PAT exposure caused the activation of mitogen-activated protein kinases (MAPKs) and its downstream c-Jun/Fos signaling pathways. Moreover, our chromatin immunoprecipitation (ChIP) analysis suggested that c-Jun/Fos binds to the promoter region of Transforming growth factor beta (TGF-β1) and possibly induces its expression. Results showed that PAT-induced TGF-β1 further activates the TGF-β1/smad signaling pathways. Higher activation of slug and snail transcription factors further modulates the regulation of pro-fibrotic molecules. Similarly, in vivo results showed that PAT exposure to rats through gavage at 25 and 100 μg/kg b. wt had higher levels of kidney injury/toxicity markers namely vascular endothelial growth factor (VEGF), kidney Injury Molecule-1 (Kim-1), tissue inhibitor of metalloproteinase-1 (Timp-1), and clusterin (CLU). Additionally, histopathological analysis indicated significant alterations in renal tubules and glomeruli along with collagen deposition in PAT-treated rat kidneys. Overall, our data provide evidence of the involvement of ROS mediated MAPKs and TGF-β1/smad pathways in PAT-induced pro-fibrotic changes in the kidney via modulation of slug and snail expression.
6995. Supplementary selenium in the form of selenylation α-D-1,6-glucan ameliorates dextran sulfate sodium induced colitis in vivo.
作者: Hongyan Li.;Hongxia Che.;Jingwen Xie.;Xiufang Dong.;Lin Song.;Wancui Xie.;Jinyuan Sun.
来源: Int J Biol Macromol. 2022年195卷67-74页
The deficiency of selenium has been found in clinical IBD patients and supplementation selenium is recognized as beneficial for colitis treatment. In this study, an organic selenium compound-selenylation α-D-1,6-glucan (sCPA) was prepared, and the effect of sCPA on DSS induced colitis mice was investigated. The results suggested that sCPA prevented the weight loss, colon length shortening, and stool loose of colitis mice. It protected colon mucosal barrier by promoting tight junction protein ZO-1 and Occludin expression. Moreover, sCPA reduced oxidative stress via regulating SOD and MDA levels, and decreased the contents of inflammatory proteins NF-κB and NLRP3 and adjusted TNF-α, IFN-γ, IL-1β, and IL-10 inflammatory cytokines. Furthermore, sCPA repaired intestinal microbiota composition especially Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria that altered by DSS in colitis mice. Meanwhile, SCFAs produced by gut microbiota were restored by sCPA close to the level in the normal group. In conclusion, these findings indicated that the sCPA might be a potential dietary selenium supplementation for the prevention and treatment of colitis.
6996. Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-κB into the nucleus.
Inflammation is a biological process that exists in a large number of diseases. NF-κB has been proven to play a pivotal role in the development of inflammation. New drugs aimed at inhibiting the expression of NF-κB have gained attention from researchers. Sirt1 has an anti-inflammatory function, and the circRNA encoded by the Sirt1 gene may also play roles in the anti-inflammatory reaction of Sirt1. In the present study, LPS-treated RAW264.7 cells were used as an inflammatory cell model, and tanshinone IIA sodium sulfonate (TSS) was used as a therapeutic drug. We found that TSS downregulated LPS-induced TNF-α and IL-1β expression nearly threefold. LPS reduced Circ-sirt1 mRNA expression by one-third, while TSS started this phenomenon. In addition, overexpression/knockdown of Circ-sirt1 neutralized the function of TSS by regulating the translocation of NF-κB. Thus, we proved that TSS has an anti-inflammatory function by upregulating circ-Sirt1 and subsequently inhibiting the translocation of NF-κB. An in vivo experiment was also performed to confirm the protective function of TSS on inflammation. These results indicated that TSS is a potential treatment for inflammation.
6997. Calcium handling genes are regulated by promoter DNA methylation in colorectal cancer cells.
作者: Lauren A Bertocci.;Jeffrey R Rovatti.;Alex Wu.;Amber Morey.;Diptiman D Bose.;Shannon R M Kinney.
来源: Eur J Pharmacol. 2022年915卷174698页
Calcium signaling regulates various cellular processes, including proliferation and cell death. DNA methylation of gene promoters is an epigenetic modification that facilitates transcriptional suppression. Disruption of calcium homeostasis and DNA methylation in cancer are each linked to tumor development and progression. However, the possible connection between these two processes has not been thoroughly studied. Therefore, we measured the expression of six gene families involved in calcium regulation (ATP2A, ITPR, ORAI, RyR, STIM, and TRPC) in a colorectal cancer cell model, HCT116, with either genetic (Double Knock-out/DKO) or pharmacological (5-aza-2'-deoxycytidine/DAC) inhibition of DNA methyltransferases. Fourteen of the 20 examined calcium handling genes were expressed at higher levels in DKO cells as compared to HCT116. Expression of five genes was increased in HCT116 cells treated with DAC, three matching DKO. Due to a unique expression pattern of the three ATP2A genes in our model, encoding the Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) pumps, we chose to evaluate the methylation status of these genes, protein expression, and potential associated physiological effects, using the SERCA inhibitor thapsigarin (TG). We observed an expected pattern of promoter methylation coinciding with reduced expression and vice versa. This differential mRNA expression was associated with altered SERCA3 protein expression and cytosolic calcium levels with TG exposure. As a result, DKO cells displayed less TG-induced cytotoxicity, as compared to HCT116 cells. Overall, it is likely that at least several calcium regulatory genes are transcriptionally regulated by DNA methylation, and this may play a role in tumorigenesis through altering apoptosis in cancer.
6998. Potential anti-inflammatory effect of anti-HMGB1 in animal models of ICH by downregulating the TLR4 signaling pathway and regulating the inflammatory cytokines along with increasing HO1 and NRF2.
作者: Ji Xu.;Sahar Mashayekhi Firouz.;Mina Farrokhian.;Shadi Ghoreishizadeh.;Talar Ahmad Merza Mohamad.;Amirabbas Rostami.;Rozita Tamjididfar.;Morteza Akbari.;Navid Shomali.;Reza Eghdam Zamiri.;Siamak Sandoghchian Shotorbani.;Ali Sadeghian Shahi.
来源: Eur J Pharmacol. 2022年915卷174694页
Intracerebral hemorrhage (ICH) is a severe clinical problem without effective treatment; the leading cause is neuroinflammation. High-mobility group box one protein (HMGB1) is an abundant protein in the cell nucleus of most mammalian cells, which exerts its function by binding to chromatin. The present study focused on the therapeutic effect of anti-HMGB1 on ICH via the downregulation of inflammatory pathways. The ICH mice models were created by collagenase IV injection in the striatum of mice. Then, mice were received different medications and divided into three groups: anti-HMGB1, anti-Toll-like receptor 4 (TLR4), and non-treated ICH groups. Cerebrospinal fluid (CSF) was obtained, and ELISA was carried out to determine the levels of inflammatory agents. Microglial cells were isolated from the cerebral hemispheres, and then Real-Time PCR and western blot were performed. The results showed that the anti-inflammatory effects of anti-HMGB1 were tremendous than anti-TLR4. Overall, the results showed that anti-HMGB1 had a more reducer effect on pro-inflammatory cytokines release (****P < 0.0001) and expression (****P < 0.0001) than anti-TLR4 when compared with the control group. It was also determined that anti-HMGB1 increased heme-oxygenase-1 (HO1) and nuclear factor erythroid-derived factor 2-related factor 2 (NRF2) (****P < 0.0001) expression in comparison with the control group while it was not significant for anti-TLR4 (CLI-095). The present study suggested that anti-HMGB1 serves as a potential anti-inflammatory molecule via reducing TLR4-related signaling pathways, pro-inflammatory cytokines production, and increasing the production of the anti-inflammatory cytokine along with heme-oxygenase-1 HO1 and NRF2 increment.
6999. Capsicum SIZ1 contributes to ABA-induced SUMOylation in pepper.
作者: Shikang Lei.;Qingzhu Wang.;Yang Chen.;Yu Song.;Min Zheng.;Yi-Feng Hsu.
来源: Plant Sci. 2022年314卷111099页
Abiotic and biotic stresses are the major factors limiting plant growth. Arabidopsis E3 SUMO ligase SIZ1 plays an essential role in plant stress tolerance. Herein, we identified a SIZ/PAIS-type protein in pepper (Capsicum annuum), namely CaSIZ1, which shares 60 % sequence identity with AtSIZ1. The stems and flowers of pepper had a relatively higher expression of CaSIZ1 than the fruits, leaves, and roots. ABA and NaCl treatments induced CaSIZ1. CaSIZ1 protein was localized in the nucleus and partially rescued the dwarf and ABA-sensitive phenotypes of Atsiz1-2, suggesting the functional replacement of CaSIZ1 with AtSIZ1. We found that CaSIZ1 interacted with CaABI5, and ABA promoted the accumulation of SUMO conjugates in pepper. CaSIZ1 knockdown did not only reduce ABA-induced SUMOylation, but also attenuated the salt tolerance of pepper. Overall, the results of this study suggest that CaSIZ1 has a significant role in ABA-induced SUMOylation and stress response.
7000. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway.
作者: Sheng Huang.;Noriyuki Konishi.;Naoki Yamaji.;Ji Feng Shao.;Namiki Mitani-Ueno.;Jian Feng Ma.
来源: Plant Physiol. 2022年188卷3期1649-1664页
Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.
|